Random Projections for Anchor-based Topic
Inference

David Mimno
Department of Information Science
Cornell University
Ithaca, NY 14850
mimno@cornell.edu

Abstract

Recent spectral topic discovery methods are extremely fast at processing large
document corpora, but scale poorly with the size of the input vocabulary. Random
projections are vital to ensure speed and limit memory usage. We empirically
evaluate several methods for generating random projections and measure the effect
of parameters such as sparsity and dimensionality. We find that methods with
structured sparsity are faster than Gaussian random projections and more accurate
than standard sparse random projections.

1 Introduction

Recent advances in spectral inference offer vast improvements in scalability for unsupervised mod-
els such as non-negative matrix factorization [[1] and latent Dirichlet allocation [2]. Rather than
maximizing the likelihood of individual observations, these algorithms use the method of moments
to match second-order statistics that summarize a corpus. In the case of a topic model trained from
a corpus of text documents, these statistics consist of a square matrix of word-word co-occurrence
probabilities, whose size is the square of the number of words in the vocabulary |V|. Spectral algo-
rithms avoid iterating more than once through the training corpus, so they are less sensitive to the
number of tokens than likelihood-based algorithms, but the size of the vocabulary quickly becomes
a limiting factor. As corpus sizes increase, the size of the vocabulary also increases. Unless we
reduce dimensionality, the matrix of sufficient statistics will grow quadratically.

In this paper we evaluate several methods for reducing dimensionality by generating random pro-
jections of the matrix of sufficient statistics. There are a number of methods for sampling random
projection matrices, including Gaussian matrices [3]] and sparse discrete matrices [4]. These meth-
ods have parameters, such as the number of random projections and the sparsity of those projections.
Although theoretical bounds are known, it is also important to measure how these models and their
parameters are affected by the specific characteristics of word co-occurrence data, and how those
differences impact the output of a spectral topic model algorithm. We evaluate their computational
efficiency, their accuracy in preserving ¢y distances, and their effectiveness at reconstructing topic
models. We find that two methods that use structured sparsity offer both efficiency and accuracy, and
that standard Achlioptas-style sparse random projections become inaccurate as we increase sparsity.

2 Topic Models

Topic models such as PLSI [5] or its Bayesian equivalent Latent Dirichlet allocation [6] represent a
corpus as a mixture of K themes or “topics,” each represented by a probability distribution ¢y, over
the vocabulary V. We represent each of the D documents in the corpus with a probability distribution
6, over these topics. Training a topic model involves inferring values for these distributions from

unlabeled document corpora. Given a model, users can quickly assess the contents of vast document
collections, browse through thematically related documents, and trace patterns of topic prevalence
across time and other variables.

3 Spectral inference

Recent spectral algorithms reduce topic model training to operations on a large square matrix of
sufficient statistics. The anchor-based spectral algorithm of Arora et al. [2] rests on the assumption
that each topic has an “anchor word” that is unique to that topic. We assume that each topic will
contain at least one unambiguous “anchor” word that has non-negligible probability only in that
topic. The presence of the kth anchor word in a document is sufficient (though not necessary) to
indicate that the document uses topic k.

The algorithm proceeds in two steps. In the first step, anchor selection, we identify one anchor word
for each topic. In the second step, topic recovery, we learn the distribution of words given topics
o1, ..., 0x by first estimating the probability of topics given words, and then using the marginal
probability of each word to exchange the conditioning variables using Bayes rule. For the purposes
of this work we focus on the first step, anchor word discovery.

The anchor words algorithm factorizes a matrix of sufficient statistics that represent word-word
conditional probabilities. We begin by estimating the probability that each pair of words will occur
together in the same document. For each document in the training set, we estimate the probability
that two randomly chosen tokens from that document will be of each given pair of word types.
Averaging over all documents, we define a matrix (), such that

ndlndj
1
Qu=7p Z INg(Ng—1) b

where n4; is the number of times word ¢ occurs in document d, and Ny is the length of the document.
For a vocabulary of size V, () has size V' x V. We set Q;; = 0 for all 4.

We then row-normalize @ to define a matrix) such that Q;; = P(wj|w;), the probability that if we
select a random token of type 4 from the corpus, a randomly selected word from the same document
as that token will be of type j. We can consider each row in this matrix a point in V' -dimensional
space, which represents the probability that each other word will occur in the same context as the
word for that row.

It can be shown that the rows of () corresponding to anchor words are the corners of a simplex in
this word co-occurrence space [2l]. We can therefore identify K anchor words with a Gram-Schmidt
orthogonalization. In the topic recovery step, we represent the points associated with each of the
remaining V' — K words as convex combinations of the K anchor-word points. As each anchor
word corresponds to a single topic, the weights generated for each non-anchor word in the topic
recovery step can be interpreted as the probability of the topics given the feature. The efficiency of
both processes depend on the size of the () matrix.

4 Random projections

Constructing the full matrix of conditional probabilities for a large vocabulary would be beyond
the memory capabilities of most contemporary computers, but we can substitute a smaller matrix
generated with random projections. The anchor words algorithm theoretically takes as input a V' x
V' matrix of conditional probabilities, which grows quadratically with the size of the vocabulary.
Although the matrix is likely to be sparse, there are still large numbers of interactions between
words in every document.

Random projections allow us to project the rows of @ to a lower-dimensional space while main-
taining /- distances between points [7]. Let P be a V' x S projection matrix, where S < V. If
the elements of P are drawn from a distribution with mean zero and unit variance, then with high
probability, the distance between rows of the matrix %QP will be close to the distances between

rows of the original matrix.

We consider four possible distributions for P. Examples of each are shown in Figure

Gaussian Sparse Fixed Striped

N
m

Figure 1: Four sample projection matrices. The Gaussian matrix is dense, with different values
in each cell. The Sparse matrix has between one and five non-zeros per row. The Fixed matrix has
exactly three non-zeros per row, which can appear in any column. The Striped matrix has, for each
row, exactly one non-zero in each three-column block.

1. Gaussian. A common choice for the elements of P are i.i.d. standard normal variates [3]].
This distribution results in a dense projection matrix.

2. Sparse. An alternative is to use sparse random projections [4} |8]. The simplest sparse dis-
tribution is to draw values i.i.d. from a discrete distribution over the values {—ﬁ, 0, ﬁ}
with probabilities 5,1 — s, 5, where s represents the probability of a non-zero value. The

expected number of non-zeros per row is sS.

3. Fixed-row Sparse. We evaluate two additional random projection schemes that keep the
same sparse marginal distribution but add structure to the selection of non-zero elements
[9]. The fixed scheme enforces the constraint that all rows of P must contain a fixed number
of non-zeros, |sS|. The arrangement of non-zeros is uniform over the (Lss:? j) possible
configurations.

4. Striped Sparse The striped scheme divides the columns of P into |sS| groups. Each row
contains exactly one non-zero in each group, selected uniformly at random.

An important advantage of a random projection is that it allows us to avoid ever constructing the full
() matrix. We want to calculate () P. The unnormalized term for each document is

1

§Nd(Nd —1)Qq = ngnlP. 2)
We can evaluate n’ P in O(SV') and then multiply m4 by the resulting S vector, avoiding any
O(V?) computation. Note that in order to generate an approximation to () we must divide by the

sum of the (unprojected) rows of (). For row 1 this quantity is equal to > _ Wndi (Ng—ng;).

5 Evaluation

In this section we measure the empirical performance of different random projections on three real
datasets. We evaluate speed, accuracy of ¢, distances, and stability of anchor word selection.

Several factors affect the computational efficiency of a random projection. We would prefer to use
as few random projections as possible, but results may become excessively noisy if we compress too
much. Dense random matrices, as with the Gaussian distribution, are the most expensive, because
they involve sampling V' x S elements, storing those random variates, and multiplying each of the S
elements in a row for every distinct word in a document. Sparse matrices are easier to create, store,
and multiply, but they add an additional parameter: the degree of sparsity. As with the number of
projections, we would prefer a sparser matrix, but it is important to understand the consequences of
a given level of sparsity on our performance metric.

0.01 0.02 0.04

0.004 -

0.003 -

0.002 - \

Type

0.001 - ~——— ixed
e 008 0.16 —— gaussian
w — sparse

0.004 - striped

0.003 -

0002 N N \
0.001 - \ — \\\ \\

1 1 1 1 1 1 1 1 1
100 200 400 800 1600320000 200 400 800 1600 320000 200 400 800 1600 3200
Projections

Figure 2: Average ¢; error between unprojected and projected /5 distances. Panels indicate varying
degrees of sparsity, from 1% up to 32% non-zero elements. All methods improve with increasing
numbers of random projections. Values for the fixed, striped and gaussian methods are nearly iden-
tical. The unstructured sparse method is sensitive to the degree of sparsity, while the other methods
are relatively insensitive.

We measured performance on three real-world document datasets, a corpus of political blog posts,
a corpus of articles from the journal Nature, and a corpus of New York Time articles. In order to
compare to unprojected data, we restricted the vocabulary to frequently occurring words, resulting
in a vocabulary size of around 4000 for each dataset.

Error. How we sample a projection matrix affects the error in distances between points. If we
choose a good projection matrix, ¢, distances between projected points should be within € of the
distances between those points in the original) matrix. For each method, we generate random
matrices with S € {100, 200, 400, 800, 1600, 3200}. For the sparse methods, we additionally use
sparsity values varying between 1% and 32% (represented as 0.01 and 0.32, respectively, in the
figures). We sampled 10000 random pairs of points and measured the {5 distance between those
points in the unprojected () matrix and the equivalent projected points. We then calculate the average
absolute difference between these distances over all sampled pairs. Results for the NYT corpus are
shown in Figure 2] Results were similar for the blog and Nature corpora (not shown).

Results for the methods are similar except for the sparse method, which has greater error as sparsity
increases. The methods with structured sparsity (fixed and striped) are stable even at 1% non-zero
elements: at 100 random projections, average ¢ error for the sparse method is 0.0046 at 1% non-
zeros and 0.0025 for 32%, while all other methods are close to 0.0025 at all levels of sparsity.

Anchor finding. The quality of a random projection affects the anchor word selection algorithm.
In the previous experiment we measured errors in maintaining ¢5 distances. The sparse method
shows larger error when we reduce the number of non-zeros. To determine whether that difference
in error is meaningful, we compare the results of the anchor word selection algorithm when we apply
different random projection matrices.

For each corpus, we run Gram-Schmidt orthogonalization on the full Q) matrix to select K = 100
anchor words. We use this set of words as a reference. We then sample random projection matrices
using each method and parameter setting, with five random initializations each. For each projection
of the () matrix we run the anchor word selection algorithm, and report the size of the intersection
between the selected set and the reference set. Text data is noisy, and real documents do not actually
follow our modeling assumptions, so we do not expect to get 100 out of 100 every time. Neverthe-

0.01 0.02 0.04
G —

90 - / /

N / / /
o 70 - Type
§ 60 - fixed
% 0.08 0.16 0.32 ~ gaussian
9] R = = sparse
8 —_— striped

70 -

/

1 1 1 1 1 1 1 1 1
100 200 400 800 1600 320000 200 400 800 1600 320000 200 400 800 1600 3200
Projections

60 -

Figure 3: Average overlap between 100 anchor words selected based on the unprojected matrix
and each projected matrix. All methods improve with increasing numbers of random projections.
The unstructured sparse method is sensitive to the degree of sparsity, while the other methods are
relatively insensitive.

less, we prefer a random projection method that produces results closer to what we would get from
the original, unprojected matrix.

Results for the NYT corpus are shown in Figure[3] and indicate the same trends shown in the earlier
experiment. Results for the other two corpora were, again, similar. The number of correct anchor
words increases as we add more random projections. The fixed and striped methods are able to
handle high sparsity with little noticeable affect on performance. In contrast, the sparse method
shows a significant drop in anchor word selection quality as we decrease the number of non-zero
elements. There is a slight decrease in the performance of the striped method at 32% sparsity. We
speculate that as the number of non-zero elements increases, the more rigidly structured matrices
are less able to differentiate between rows.

Speed. Methods with structured sparsity offer improved computational efficiency. Although we
generally prefer more accurate methods, for practical applications it is necessary to balance accuracy
with speed. In this experiment we measure the effects of methods and parameter settings on the time
needed to generate a projection of the matrix of sufficient statistics from documents.

Results are shown in Figure [] for the gaussian and fixed methods. Timing results for the sparse
and striped methods are equivalent to the previous two methods, respectively, and are not shown for
clarity. As we increase the number of random projections, we linearly increase the time to generate
the projected matrix. The fixed method, because it has a pre-set number of non-zero elements in each
row, can be represented and iterated over through the sparse indices of the non-zero elements. When
the random matrix is very sparse, the fixed method is roughly twice as fast as the dense Gaussian
method, but as the number of non-zero elements increases past 8%, the dense method becomes
more efficient. Of course, these numbers are subject to the details of the implementation, and may
be improved in the future.

In addition to speed, sparse random projections also provide savings in memory. To store a Gaussian
matrix we require V.S floating point variables. In contrast, to store the matrix for a fixed or striped
random projection with 1% non-zeros, we require only 0.01V S integer variables to record the index
of the non-zeros and their signs.

0.01 0.02 0.04

20000 -
15000 -
10000 -
g 5000~ / —/ ‘/
c Type
8 fixed
3 ixe
= 20000 - = gaussian
=
15000 -

10000 -
5000 - ‘/ _/ ‘/

1oo 200 400 800 16OO 320(100 200 4oo 800 1600 320&00 200 400 800 1600 3200
Projections

Figure 4: Time to generate a projection of the sufficient statistics for a corpus. The fixed method is
faster at high sparsity (0.01), but bookkeeping overhead results in slower performance as the number
of non-zero elements increases (0.32).

6 Conclusions

Random projections enable us to scale anchor-based topic model algorithms to large vocabularies.
The choice of the distribution we use to sample random projection matrices and the parameters for
those methods have a significant effect on both the accuracy and efficiency of the resulting projected
matrix. We recommend using either of the two methods that use structured sparsity (fixed and
striped). Unlike standard sparse projections, these methods produce good results for the text-based
data used in topic inference, although it is possible that additional term reweighting as used by Li
et al. [8] might help. We find empirically that accuracy is substantially improved by using at least
800-1000 random projections, but that these projections can be extremely sparse without affecting
performance.

References

[1] Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a nonnegative matrix factor-
ization — provably. In STOC, 2012.

[2] Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen Wu, and
Michael Zhu. A practical algorithm for topic modeling with provable guarantees. In ICML, 2013.

[3] Sanjoy Dasgupta. Experiments with random projection. In UAZ, 2000.

[4] Dimitris Achlioptas. Database-friendly random projections. In SIGMOD, pages 274-281, 2001.
[5] Thomas Hofmann. Probabilistic latent semantic analysis. In UAZ, 1999.

[6] David Blei, Andrew Ng, and Michael Jordan. Latent Dirichlet allocation. JMLR, 2003.

[7] William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Con-
temporary Mathematics, 26:189-206, 1984.

[8] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In KDD, 2006.
[9] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. In SODA, 2012.

	Introduction
	Topic Models
	Spectral inference
	Random projections
	Evaluation
	Conclusions

