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Learning probability densities for natural language representations is a difficult problem because language 

is inherently sparse and high-dimensional. Negative sampling is a popular and effective way to avoid in- 

tractable maximum likelihood problems, but it requires correct specification of the sampling distribution. 

Previous state of the art methods rely on heuristic distributions that appear to do well in practice. In 

this work, we define conditions for optimal sampling distributions and demonstrate how to approximate 

them using Quadratically Constrained Entropy Maximization (QCEM). Our analysis shows that state of the 

art heuristics are restrictive approximations to our proposed framework. To demonstrate the merits of our 

formulation, we apply QCEM to matching synthetic exponential family distributions and to finding high 

dimensional word embedding vectors for English. We are able to achieve faster inference on synthetic 

experiments and improve the correlation on semantic similarity evaluations on the Rare Words dataset 

by 4.8%. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The combination of large, publicly available text collections and

distributed word vector representations [4] has revolutionized our

ability to study the underlying structural patterns of language. Dis-

tributed representations, or word embeddings, operationalize the

distributional hypothesis [11] , which asserts that words acquire

meaning over time through their contexts. Embeddings approxi-

mate these contextual meanings by mapping words to continuous

vectors, so that words that occur in similar contexts have similar

vectors. 

Recently, studies have shown that these vectors yield substan-

tial representation power and proven to be much more useful

in many linguistic tasks than traditional counting based N-Gram

representations [3] . Nowadays, word embeddings are typically

adopted as fundamental building blocks for a variable set of

linguistic tasks [5] . Some successful applications of such vectors

are sentiment classification [27] , sarcasm detection [12] , ques-

tion answering [6] , cross-language text classification [21] , and

recommendation systems [29] . 
✩ Conflict of interest. None. 
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Word embeddings are typically dense and have radically lower

imensionality than the number of words in a language, but they

re nevertheless still high dimensional. Traditional statistical esti-

ators such as Maximum Likelihood Estimation (MLE) easily be-

ome intractable for learning these high dimensional models [15] .

egative sampling on the other hand, derived from contrastive

earning, easily scales up to large embedding models. Although

calability is an attractive property itself, the user still has to con-

ider design issues to ensure successful learning with negative

ampling. Since we have limited data in many practical word em-

edding problems, it becomes crucial to use a reasonable sampling

istribution in order to fit accurate models. 

In this work we use negative sampling as the learning com-

onent to address aforementioned problems of word embedding

rchitectures. We propose a relaxed Maximum Entropy based

ampling principle. The main contributions of this paper can be

ummarized as follows: 

• An objective is obtained which expresses the effect of a sam-

pling distribution with a physical analogy, as attractive and re-

pulsive forces. This formulation lends to a Maximum Entropy

formulation. 
• A surrogate smoothing objective to the original problem:

Quadratically Constrained Entropy Maximization (QCEM) is pro-

posed, posing a computationally attractable method for choos-

ing sampling distributions. Our proofs show that state of the

https://doi.org/10.1016/j.patrec.2019.04.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Fig. 1. Toy example demonstrating the effect of negative sampling distributions on 

learning. Blue and red points are samples from p d and the negative distribution. 

The green trajectory shows the optimization path of the model distribution’s mean. 

(a) Empirical selection of the sampling distribution results in a poor model fit. (b) 

Optimized sampling distribution pushes away p θm more appropriately and results 

in a more accurate fit. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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art heuristics are simple and restricted approximations of our

general maximization framework. 
• Empirical findings on learning synthetic exponential family

densities are provided for analysing the convergence rates of

methods. 
• The merits of our approach are further demonstrated on word

vector space learning when data is scarce and limited. We

report word similarity performances on a large number of

datasets containing a diverse set of query vocabularies, and find

that QCEM-trained vectors had as good or better performance

in almost all of the comparisons, and did particularly well on

rare words, achieving a 4.8% increase. 

. Quadratically constrained entropy maximization 

We are given T i.i.d. data samples x = { x 1 , x 2 , . . . , x T } drawn

rom a true but unknown data density p d ( u ) defined on the

eal domain u . Similarly, negative samples y = { y 1 , y 2 , . . . , y T } are

rawn from the prior negative distribution p 0 n ( u ) . The goal is to

t a probability model p θm 

( u ) , having parameters θ. Without loss

f generality of the framework, one can also learn unnormalized

odels which ln p θm 

( u ) = ln ˜ p θm 

( u ) + Z , where ˜ p θm 

( u ) represents

he unnormalized density, and Z is the normalization factor to be

earned. Then, the full parameter set to learn is { θ, Z} . This leads

o the negative sampling objective: 

( θ) = E p d 

[
ln σ ( x ; θ) 

]
+ E p 0 n 

[
ln (1 − σ ( y ; θ)) 

]
(1)

Negative sampling is an instantiation of the contrastive frame-

ork. If we had unlimited data, for any sampling distribution, es-

imation error would be asymptotically normally distributed [13] .

owever, we are more interested in the word embedding problems

here samples are usually considered to be insufficient for learn-

ng high-dimensional model densities. In such settings, our sam-

les are finite, and biased. 1 If we have an unsuitable prior p 0 n ( u ) ,

he learned model p θm 

( u ) can easily be inaccurate. For illustrative

urposes, consider a toy scenario in Fig. 1 a where optimization

s in the R 

2 space. Here, empirical samples obtained from p d are

ighly biased and a naive negative sampling prior p 0 n ( u ) is chosen

or learning the model p θm 

( u ) . Negative sampling can not provide

ufficient repulsion to stop p θm 

( u ) from overfitting to the empirical

amples. Instead, given a criterion to optimize the sampling distri-

ution p n , we could prevent inaccurate model fits as in Fig. 1 b. This

otivates one to optimize p n before we perform stochastic updates

o the embedding model. 

Although Eq. (1) is the standard formulation of the negative

ampling, we want to reformulate it to give us an intuitive un-
1 Many cooccurrence statistics over word context pairs are either underestimated 

r overestimated. 

�  
erstanding on the role of the negative distribution. To make the

ependency on p n explicit, we apply mechanical steps (provided in

upplementary Material) and rewrite Eq. (1) jointly in terms of the

mbedding parameters θ and the sampling distribution p n : 

J( θ, p n ) = E p d [ ln p θm 

( x )] − E p d [ ln (p θm 

( x ) + p n ( x ))] 

− E p 0 n (y ) [ ln (p θm 

( y )) + p n ( y ))] + E p 0 n ( y ) 
[ ln p n ( y )] , 

(2) 

here we have four terms guiding the optimization of model dis-

ribution. With this reformulation, we can express the terms us-

ng a physical analogy, as attractive and repulsive forces. The first

erm is the fit term where we require the p θm 

( x ) be similar to

 d ( x ). In the second and third terms, the mixture distribution of

p θm 

( u ) + p n ( u ) 2 is evaluated under the expectation of p d ( u ) and

p 0 n ( u ) . This means, this mixture is repulsed to fit to these distribu-

ions and can be interpreted as terms to provide regularization to

he learning of p θm 

. We denote the second term as the data repul-

ion force, and the third term as the prior repulsion for the mixture

istribution. If we analyze a single update on θ, model parame-

ers, the fourth term becomes a constant. We can then illustrate in

ig. 2 how the combination of three terms drives the optimization

f the mixture distribution. 

If we have not sampled any negatives from the prior p 0 n ( u ) ,

hen the third and fourth terms do not contribute to Eq. (2) . In this

cenario, the data repulsion term is the one preventing overfitting

o the data samples. When we know that there is strong bias while

ampling the data points, we have to learn p n such that it pro-

ides sufficient data repulsion for the mixture p θm 

( u ) + p n ( u ) . This

eans we want to maximize the data repulsion E p d 
[ ln (p θm 

( x ) +
p n ( x ))] term for p n . This is troublesome at first sight, since it looks

ifficult to disentangle the p n function. Luckily, two design consid-

rations in word embeddings allow us to bypass this problem. 

First, in many word embedding objectives, including Word2Vec

20] and GLoVe [23] embeddings, optimization is done on suffi-

iently high dimensional spaces, and model parameters are initial-

zed randomly on the space [17] . Under this condition, we can as-

ume that the model likelihood p θm 

( x ) for any given sample will

e negligibly low right after the initialization. Furthermore, p n is

sually constructed from the empirical distribution which means

 n ( x ) is going to be the dominant term inside the mixture. These

wo common design practices allow us to instead optimize an up-

er bound. For any given data point x , we consider p θm 

( x ) as a con-

tant and inferior quantity and write the upper bound as: 

(p n ) = −E p d [ ln p n ( x )] (3)

ince we are trying to maximize the objective, this equation sug-

ests that we want to learn a p n such that we want to deviate

way from the empirical data distribution. The equation is under-

etermined in nature; many choices are possible for selecting the

 negative sampling distribution p n . We make the least possible as-

umptions, and resort to a Maximum Entropy [30] approach given

hat we satisfy distributional consistency. That is, we want to max-

mize the entropy of p n , while being consistent with the empirical

ata’s statistics. Optimizing the upper bound of the data repulsion

erm with respect to the empirical statistics, we aim to obtain a

etter sampling distribution for learning p θm 

as in Fig. 1 b. Reliance

n the data’s empirical moments will constrain the solution. 

Assume the initial word frequencies are given in a data vec-

or d = (d 1 , d 2 , . . . , d n ) 
T in which the entries are ordered: d i ≥ d i +1 

nd where n is the vocabulary size. Let p be the parameters to

e optimized for the p n . We constrain the deviation of p from the

ata d by a quadratic constraint ( p − d ) T �−1 ( p − d ) ≤ βn where
−1 is the precision matrix. These design considerations yield the
2 Mixture normalization constant is 2 but not shown for the ease of notation. 
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Fig. 2. Three forces guiding the optimization of mixture distribution p θm ( x ) + p n ( x ) , shown in green contours. Blue and red are data and negative samples. Blue arrows 

represent the fit force, purple arrows represent data repulsion. Red arrows represent the prior repulsion. (a) In early stages of optimization, fit force and prior repulsion 

push the mixture towards empirical samples. (b) In later stages, data repulsion prevents overfitting to the data. Our goal here is to also optimize the data repulsion term to 

prevent overfitting to the data samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4 As Hankel and Toeplitz matrices are closely related, one can question the effect 

of � being Toeplitz when using this binary structure. In this case, we achieve the 
following problem: 

max 
p 

H [ p ] 

s.t. p ≥ 0 

1 

T p = 1 

( p − d ) T �−1 ( p − d ) ≤ βn, 

(4)

where positivity and sum to one ensures that p n is a probabil-

ity function. Although this problem seeks sampling distributions

with higher entropy, it is difficult to solve in practice via gradi-

ent descent updates. It frequently suffers from numerical difficul-

ties when many probabilities are almost zero. 3 Then, the log func-

tion easily yields −∞ values causing the gradient to go infinite

where Lipschitz continuity conditions do not hold anymore. As the

problem dimensionality increases, we are much more likely to en-

counter such problems. To circumvent problems arising from en-

tropy maximization, we further want to design a surrogate for the

problem in Eq. (4) . 

Proposition 1. Let a probability mass function p defined with or-

dered probability masses: p 1 ≥ p 2 ≥ · · · ≥ p n > 0 . Then the applica-

tion of a smoothing operator increases the entropy of p . 

Proof. The key part of the proof uses a Taylor series expansion.

The full proof is provided in Supplementary Material. �

This result poses that there is a relation between the entropy

and the smoothing operator. Motivated by it, we relax the entropy

maximization problem in Eq. (4) to: 

max 
p 

− ‖ ( � − I ) p ‖ 2 

s.t. p ≥ 0 

1 

T p = 1 

( p − d ) T �−1 ( p − d ) ≤ βn 

(5)

where � is chosen as a Hankel matrix [9] . This formulation en-

forces that neighboring entries in p become similar, making the

distribution smooth and thereby increasing the entropy. Moreover,

the problem is convex in p and known to yield a unique maximum

[24] . This formulation does not make any distributional assump-

tion on the form of p n , nevertheless we can still favour particular

solutions by setting the precision matrix �. Using a Hankel ma-

trix in its most general form results in an impractical number of

objective terms for large vocabularies. Thus, we further embed a
3 We know that word-context conditional distributions are highly sparse and 

contain very minor probabilities in their tail. 

s

m

r

inary structure with �i j = 1 if j = i + 1 and �i j = 0 elsewhere. 4 

his specialized circulant structure of � reduces the number of

erms in the objective to n , the vocabulary size. 

roposition 2. Let a PMF p given with ordered masses: p 1 ≥ p 2 ≥
· · ≥ p n > 0 . Also let 0 < λ< 1 be the density powering parameter.

hen, application of powering acts as a smoother on the density given

hat there exists a lower bound γ on p i that it is related to λ with:

= ( 1 
λ

∑ 

j p 
λ
j 
) 1 / (λ−1) 

roof. The proof follows by recognizing the Lipschitz condition,

nforcing it to hold by assuming a lower bound and exploiting the

iminishing structure of the first order derivative. The full proof is

rovided in Supplementary Material. �

This result sheds light on why the heuristics [20,23] adopted

or negative sampling work moderately well in practice. As long

s the minimum probability mass of the sampling distribution is

ounded, powering distributions acts as a smoother. This is simply

n approximation to our smoothing formulation. 

Despite its practical consequences, the problem with the pow-

ring heuristic is that, to the best of our knowledge, there is no

ationale for the optimal sampling distribution to be in the Pareto

amily. Unlike [20] , which constrains the word frequency density to

e in the Pareto family, the formulation in Eq. (5) yields more gen-

rality. It does not enforce any distributional assumptions, opening

p possibilities to discover better optima. In the next section, we

xperimentally compare these heuristic approaches to our formu-

ation. 

. Experiments 

Experimental setup. We provide two sets of experiments to

emonstrate the efficiency of our approach. For both experi-

ents, the QCEM formulation is solved by a Splitting Conic Solver

22] that can solve large-scale convex cone programs by using an

lternating directions method [7] . For synthetic experiments, we

se inverse transform sampling to sample from 1D probability dis-

ributions. The error for model fits is measured by calculating the

verage KL (p d || p θm 

) by repeating the experiments 10 times with

ifferent random initializations. Learning the model distribution

n both synthetic and real world experiments, we use the same
ame objective with Eq. (5) given that entries of p are reversed. Hence for penal- 

izing the difference of consecutive entries, choosing between Hankel and Toeplitz 

atrices does not constitute a key difference in our formulation, and is a matter of 

eparametrization. 
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tochastic gradient algorithm with the same learning rate for all

ettings. 

.1. Exponential family density estimation 

Data generation and parameters. The interest in this section is

o quantify the contribution of QCEM contrastivity for the unnor-

alized density estimation problem. We define a data generator

ignal S ( θ∗, φ( u )) over the domain [ −2 π, 2 π ] with sine and cosine

ases: 

( θ
∗
, φ(u )) 

= θ ∗
1 sin (2 πω 1 u ) + θ ∗

2 cos (2 πω 2 u ) + · · · + θ ∗
2 n cos (2 πω 2 n u ) , 

here φ(.) represents the transformation to the trigonometric

unctions. Then the probability densities are constructed using the

xponential Family (EF) representation: 

p d (u ; θ∗
) ∼ exp 

(
S( θ

∗
, φ(u )) 

)
, 

here trigonometric bases are interpreted as sufficient statis-

ics. Finally, we learn the unnormalized EF density ln p θm 

(u ) =
n p̄ m 

(u ; θ) + Z with parameters { θ, Z} . In other words, the goal

s to learn the true canonical parameters of p d , the amplitudes of

ach trigonometric statistic, plus the normalization constant of the

ensity. 

Methods. Our first baseline for the contrastive density is the

nivariate Gaussian density (UNV). Although it is simple to draw

amples from this distribution, it is a poor choice for a contrastive

unction because it is only able to provide a limited amount of

iscrimination between data and contrastive densities. Another
ig. 3. Learned models (blue) for the data density (green dashed), using different samplin

CEM distributions. Green points are data samples x and red points are negative samples 

o colour in this figure legend, the reader is referred to the web version of this article.) 
aseline choice of p c is a more flexible nonparametric kernel den-

ity estimate [26] (KDE), where p c is fitted to the observations. In

ome applications, one might know the parametric family of the

nderlying data density in advance, but not its parameters. We de-

ict this case with an Exponential Family (EF) baseline where we

ave access to the true sufficient statistics of p d , but not the canon-

cals. Knowing the true sufficient statistics of p d is a very strong as-

umption, making this baseline very competitive. As the synthetic

xperiments have relatively low numerical complexity, we also re-

ort baseline results for the ENT baseline (solution of the Eq. (4 )).

inally, QCEM corresponds to our approach with an isotropic preci-

ion. We constructed the data constraint vector d for this problem

sing the Kernel Density Estimate. 

Results. Fig. 3 shows the density fits obtained with each nega-

ive sampling approach. We observe that the univariate approach

an only learn the prominent peaks of p d in locations with many

amples. For instance, the data peaks on the leftmost region are

ot captured accurately. In contrast, EF collects samples more ho-

ogeneously with its trigonometric bases and helps to fit more

ccurate models compared to the Univariate approach. KDE also

btains a fit that is comparable with the EF and QCEM fits. Us-

ng KDE, the low probability region variations are captured, but the

robabilities of data peaks are not correctly estimated. QCEM con-

rastivity obtains the best fits: not only the data peaks, but also the

ow probability regions are captured much more accurately com-

ared to the KDE and EF. 

Note that the distribution p c obtained by QCEM is rela-

ively uniform compared to the EF and KDE distributions. This

ight raise the argument that a naive uniform distribution would
g distributions p c (red). Top to bottom row shows (a) Univariate (b) KDE (c) EF (d) 

from p c . Gray areas highlight the fitting errors. (For interpretation of the references 
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Fig. 4. Learning curves of each contrastivity approach. 
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provide the best sampling. Indeed, without any imposed moment

constraints on the optimized distribution, the maximum entropy

distribution is the uniform distribution. In a low dimensional set-

ting the uniform distribution is an appropriate choice, but in

high dimensions it quickly becomes problematic. Uniform sampling

from a high dimensional volume is very inefficient, and a huge

number of samples is required to ensure that we sample from re-

gions where the data probability is sufficiently high. In contrast,

QCEM combines the efficient sampling of data while providing ho-

mogeneous cover over the probability domain. 

The full learning curves of all methods are depicted in Fig. 4 .

Consistent with the findings of [14] , asymptotically, all approaches

are able to find the underlying density. Nevertheless, Univariate

and KDE convergence is much slower than the other methods and

they are inappropriate sampling techniques for small datasets. The

EF and ENT approaches have a moderate rate of convergence. Note

that the ENT approach has slower convergence, presumably due to

the numerical difficulties of entropy maximization [19] . QCEM ob-

jective avoids these numerical problems, yielding a faster alterna-

tive to these approaches. 

3.2. Word embeddings similarity 

Data and parameters. In the word embedding problem, the

joint density over the sampled words and context pairs have

to be learned. Following the state-of-the-art embedding evalua-

tion schemas [25] , we apply standard HTML text processing to

Wikipedia. We remove words that occur less than 100 times in the

whole corpus. This results in a sequence of several billion words,

with a vocabulary size around 37k. The cooccurrence is then com-

puted using windows of 10 tokens to each side of the focus word,

following the practices of [2] . We use the word embedding archi-

tecture [16] that is known to be more robust for small sample

sizes, dropouts and perturbations in the training set. The learning

rate is initially set similarly to the methods and decayed in a linear

fashion. 

Evaluation and baselines. Despite the challenging nature of the

objective evaluation of learned the word vectors, recent work in

[25] suggests that intrinsic tasks, such as word similarity mea-

surements, are a better proxy for measuring the generic quality of

word vectors than the extrinsic evaluations. We therefore follow

the experimental setup of [1,25] , and compare the Spearman’s

correlation estimates of each model to human estimated similar-

ities. Here a higher score indicates a higher correlation to human

estimated word similarity judgements. For datasets containing

multiple human annotators, we simply average the annotator
cores. The WSS and WSR [1] are similarity and relatedness

ubsets of WordSim353 [10] dataset. WSS contains taxonomic

elations (e.g. synonymy) and WSR mainly covers topical rela-

ions. These two datasets are relatively small and contain words

hat have relatively high frequency. MEN [3] word pair dataset

ontains 3k randomly sampled words, that occur at least 700

imes, extracted from a freely available combined corpora having

pproximately 2.7B tokens. Sampling was performed to ensure

alanced range of relatedness levels. The human similarity scores

or this dataset are annotated using an interface for the Amazon

echanical Turk. The RW [18] dataset contains 2034 word pairs,

rst word randomly sampled from Wikipedia documents. Then the

utliers are filtered using WordNet entries, and the second word

s sampled from synonym sets. Both MEN and RW contains many

ords with low frequency. 

Baselines. We compare the following methods: 

• RG , which uses the word frequency distribution, the data statis-

tics, as its negative distribution p n . 
• RGP , uses a power heuristic of the unigram distribution. The

powered version of the word frequencies are used ∼ p c ( w ) λ.

This heuristic is the common baseline that is used by the state-

of-the-art method [20] , where λ is a corpus dependent parame-

ter. For a fair comparison, we set λ accordingly to the empirical

findings of [20,23] as it is known to yield the best results for

English corpora. 
• Uni (Uniform) approach. We use a uniform distribution which

all words of the vocabulary are equally probable to be picked

as contrastive samples. 
• QCEM , our proposed approach. For the problem construction,

we use the unigram frequencies as data constraints: d ∼
r C r 
which C r are rows of word cooccurence matrix. For scalability

considerations, we optimize over equivalence classes of words:

defined such that words with the same frequency are in the

same class. This equivalence strategy yields 5.2 k variables to

optimize instead of 37k variables, increasing speed by an order

of magnitude. Finally, we did not assume any a priori precision

and decided to use an isotropic �. 

Quantitative results. Fig. 5 shows word similarity performances

or all approaches on all datasets. In all datasets, the RG base-

ine performs poorly. For simpler datasets such as WSR and WSS,

CEM outperforms all baselines, especially on the lower dimen-

ional regime where the correlation gain is slightly larger than

igh dimensional regime. Both taxonomy relations in WSS, and

opical relations of WSR gain from the QCEM sampling. The Uni

pproach yields competitive performance especially in lower di-

ensions, but on high dimensional data the performance degrades

uickly, as in the WSR and MEN datasets. 

The performance gaps becomes more perceivable on more diffi-

ult datasets. On the MEN dataset, RGP is worse than Uni especially

n lower dimensions, whereas in high dimensions the powering ap-

roach is better than the uniform distribution. QCEM and Uni per-

orm quite alike in low dimensional MEN experiments. We believe

his is due to two reasons. First, MEN similarity scores are much

ore noisy than other WS datasets due to the non-expert annota-

ors which conceals the performance gap. Secondly, MEN vocabu-

ary content is much broader than other datasets and it contains

ords occurring more than 700 times. This means query words

re mostly from the heavy tail region in which QCEM and Uni be-

aves similarly. Nevertheless, QCEM does not suffer from perfor-

ance losses in high dimensions like Uni approach and consis-

ently achieves better performance. 

On the RW dataset, it is noteworthy that the uniform contrast

pproach outperforms the powering heuristic with a small mar-

in, for all model instances. For the WSS and WSR datasets, the

owering heuristic obtains a reasonable performance whereas in
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Fig. 5. Word Similarity performances of the methods on WSR, WSS, MEN and RW datasets. 
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T  
he RW dataset it performs worse. Apparently, the constraints im-

osed by the powering heuristic turn out to be inappropriate for

he RW dataset. This results in a suboptimal solution when the se-

antic relations of words are queried for a large set of less fre-

uent words. The QCEM approach, on the other hand, does not

mpose such constraints, and obtains performance improvements

ith large margins. In the RW dataset, we finally compute the av-

rage correlation score over all the models, resulting in a 2.0% in-

rease over the powering heuristic and a 4.8% over the standard

aseline, a powerful quantitative indicator that embeddings trained

ith QCEM yield more realistic structure than the ones trained

ith computationally simple, but theoretically not justified heuris-

ics. 

.3. Real world text classification 

Setup. We evaluate vectors in the Agnews text classification

enchmark, which consists of news articles collected from multiple
Fig. 6. Agnews text classification performance of v
ources. The dataset is randomly split into 120 k training and 7 k

est documents and the goal is to predict the label of each docu-

ent from {world,sports,business,science-technology} classes. 

We plug in trained word vectors to a standard Multi Layer Per-

eptron (MLP) with logistic activation units and ensure fair com-

arison by fixing the embedding weights during the training which

eans the word vector layer does not change. This helps us to

ccurately quantify the performance gain from input vectors. Ex-

eriments are carried on with varying numbers of hidden units to

valuate how vectors contribute to different type of networks and

hether they provide a sufficient generalization for different archi-

ectures. Each network is then trained using a standard Stochastic

radient Descent optimizer with an adaptive learning schema. We

hen compute the F-1 scores for each approach. 

Results. The result of each experiment is shown in Fig. 6 . RGP

pproach performs worse in general. Networks trained with RG

ectors occasionally perform well, but perform poorly on average.

hese vectors suffer from performance fluctuations suggesting
ectors trained with each sampling algorithm. 
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Fig. 7. T-SNE dimensionality reduction of document embeddings. Each class is 

coded with a color. As confusions are common in the center region, we quantify 

the number of confusion regions (samples from multiple classes are present). Yel- 

low boxes indicate Region of Confusions (RC). Less clutter is observed for QCEM 

embeddings. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.). 
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that they are less robust to the local minima inherent in the

problem. We also observe this phenomenon when we use vectors

with RGP , illustrating another reason why optimizing the sam-

pling distribution with our approach is advantageous. Note that

performance of QCEM does not deteriorate even for networks with

large number of neurons, and produces more stable scores. We

visualize the documents constructed from embeddings. In Fig. 7 ,

we show dimensionality-reduced document vectors in which each

yellow region denotes a Region of Confusion. We expect document

embeddings to have low intra-class distances, and high inter-class

distances. QCEM document clusters are more coherent, and subject

to less confusion in the center region. 

4. Conclusions 

We have presented a novel framework for optimizing negative

sampling distribution using our Quadratically Constrained Entropy

Maximization (QCEM) approach. Our formulation poses a convex

and computationally tractable solution, has linear time complexity

with respect to the vocabulary size, and permits scaling to large

word embedding problems. Our theoretical analysis shows not only

the generality but also the relation of our work to the prior heuris-

tic state of the art approach, which is shown to be an approxima-

tion to our general maximization framework. 

We validated our formulation both in synthetic density and

real-world word vector space learning experiments, demonstrating

that QCEM obtains faster convergence rates compared to a vari-

ety of competing approaches for learning exponential family prob-

ability densities. We reported the performance of QCEM in word

similarity tasks, in which assumptions of the heuristic methods

was not fulfilled. Results are shown for word similarity and text

classification tasks, but implications of our framework extend to

tasks such as Automatic Text Summarization [8,28] . In summary,

QCEM can learn rare aspects of word meanings, especially when

high sampling bias is present in the documents. As optimized dis-

tributions promote diversity, the chance to discover such aspects

increases, especially when document size is limited. We leave val-

idating our framework on ATS tasks to future work. Combination

of the theoretical results and empirical evidence obtained for the

vector space learning problems suggests that QCEM is an attractive

solution to apply for determining negative sampling distributions. 
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