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Abstract

How can a single person understand what’s going on in a collection of
millions of documents? This is an increasingly common problem: sifting
through an organization’s e-mails, understanding a decade worth of
newspapers, or characterizing a scientific field’s research. Topic models
are a statistical framework that help users understand large document
collections: not just to find individual documents but to understand the
general themes present in the collection.

This survey describes the recent academic and industrial applications
of topic models with the goal of launching a young researcher capable
of building their own applications of topic models. In addition to topic
models’ effective application to traditional problems like information
retrieval, visualization, statistical inference, multilingual modeling, and
linguistic understanding, this survey also reviews topic models’ ability
to unlock large text collections for qualitative analysis. We review their
successful use by researchers to help understand fiction, non-fiction,
scientific publications, and political texts.

. Applications of Topic Models. Foundations and TrendsR© in Information Retrieval,
vol. XX, no. XX, pp. 1–154, 2017.
DOI: 10.1561/XXXXXXXXXX.



1
The What and Wherefore of Topic Models

Imagine that you are an intrepid reporter with an amazing scoop: you
have twenty-four hours of exclusive access three decades of e-mails sent
within a corrupt corporation. You know there’s dirt and scandal there,
but it has been well-concealed by the corporation’s political friends.
How are you going to understand this haystack well enough to explain
it to your devoted readers under such a tight deadline?

1.1 Tell Me about Your Haystack

Unlike the vignette above, interacting with large text data sets is
often posed as a needle in a haystack problem. The poor user—faced
with documents that would take a decade to read—is looking for a
single needle: a document (or at most a handful of documents) that
matches what the user is looking for: a “smoking gun” e-mail, the
document that best represents a concept [Salton, 1968] or the answer
to a question [Hirschman and Gaizauskas, 2001].

These questions are important. The discipline of information re-
trieval is built upon systematizing, solving, and evaluating this problem.
Google’s empire is built on the premise of users typing a few keywords

2



1.1. Tell Me about Your Haystack 3

into a search engine box and seeing quick, consistent search results.
However, this is not the only problem that confronts those interacting
with large text datasets.

A different, but related problem is understanding large document
collections, common in science policy [Talley et al., 2011], journalism,
and the humanities [Moretti, 2013a]. The haystack has more than one
precious needle. At the risk of abusing the metaphor, sometimes you
care about the straw. Instead of looking for a smoking gun alerting
to you some crime that was committed, perhaps you are looking for
a sin of omission: did this company never talk about diversity in its
workforce? Instead of a single answer to a question, perhaps you are
looking for a diversity of responses: what are the different ways that
people account for rising income inequality? Instead of looking for one
document, perhaps you want to provide population level statistics: what
proportion of Twitter users have ever talked about gun violence?

At first, it might seem that answering these questions would require
building an extensive ontology or categorization scheme. For every
new corpus, you would need to define the buckets that a document
could fit into, politely ask some librarians and archivists to put each
document into the correct buckets, perhaps automate the process with
some supervised machine learning, and then collect summary statistics
when you are done.

Obviously, such laborious processes are possible—they have been
done for labeling congressional speeches1 and understanding emotional
state [Wilson and Wiebe, 2005]—and remain an important part of social
science, information science, library science, and machine learning. But
these processes are not always possible, fast, or even the optimal outcome
if we had infinite resources. First, they require a significant investment
of time and resources. Even creating the list of categories is a difficult
task and requires careful deliberation and calibration. Even if it were
possible, a particular question might not warrant the time or effort: the
œuvre of a minor author (only of interest to a few), or the tweets of a
day (not relevant tomorrow).

This survey explores the ways that humans and computers make

1www.congressionalbills.org/

www.congressionalbills.org/


4 The What and Wherefore of Topic Models

sense of document collections through tools called topic models. Topic
models allow us to answer big-picture questions quickly, cheaply, and
without human intervention. Once trained, they provide a framework for
humans to understand document collections both directly by “reading”
models or indirectly by using topics as input variables for further analysis.
For readers already comfortable with topic models, feel free to skip this
chapter; we will mostly cover the definitions and implementations of
topic models.

The intended audience of this book is a reader with some knowledge
of document processing (e.g., knows what “tokens” and “documents”
are), basic understanding of some probability (e.g., what a distribution
is), and interested in many application domains. We discuss the infor-
mation needs of each application area, and how those specific needs
affect models, curation procedures, and interpretations.

By the end of the book (Chapter 9), we hope that readers will
be excited enough to attempt to embark on building their own topic
models. In this chapter, we go deeper into more of the implementation
details. Readers who are already topic model experts will likely not
learn much technically, but we hope our coverage of diverse applications
will expose a topic modeling expert to models and approaches they had
not seen before.

1.2 What is a Topic Model

Returning to our motivating example, consider the e-mails from Enron,
the prototypical troubled corporation of the turn of the century. A source
has provided you with a trove of emails, and your editor is demanding
an article by yesterday. You know that wrongdoing happened, but you
do not know who did it or how it was planned and carried out. You
have suspicions (e.g., around the California energy spot market), but
you are curious about other skeletons in the closet and you are highly
motivated to find them.

So you run a topic model on the data. True to its name, a topic model
gives you “topics”, collections of words that make sense together. The
Enron e-mails reveal topics about gas contracts, California regulators,
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Table 1.1: Five topics from a twenty-five topic model fit on Enron e-mails. Example
topics concern financial transactions, natural gas, the California utilities, federal
regulation, and planning meetings. We provide the five most probable words from
each topic (each topic is a distribution over all words).

Topic Terms
3 trading financial trade product price
6 gas capacity deal pipeline contract
9 state california davis power utilities
14 ferc issue order party case
22 group meeting team process plan

and stock prices (Figure 1.1).
The first half of a topic model connects topics to a jumbled “bag

of words”. When we say that a topic is about X, we are manually
assigning a post hoc label (more on this in Chapter 3.1). It remains the
responsibility of the human consumer of topic models to go further and
make sense of these piles of straw (we discuss labeling the topics more
in Chapter 3).

Making sense of one of these word piles by itself can be difficult.
The second half of a topic model links topics to individual documents.
For example, the document in Figure 1.1 is about a California utility’s
reaction to the short-term electricity market and exemplifies Topic 9
from Figure ??. Considering examples of documents that are strongly
connected to a topic, along with the words associated with the topic,
can give us a more complete representation of the topic. If we get a
sense that Topic 9 is of interest, we can explore deeper to find other
documents.

1.3 Foundations

You might notice that we are using the general term “topic model”.
There are many mathematical formulations of topic models and many
algorithms that learn the parameters of those models from data. Al-
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Yesterday, SDG&E filed a motion for adoption of an electric
procurement cost recovery mechanism and for an order short-
ening time for parties to file comments on the mechanism. The
attached email from SDG&E contains the motion, an executive
summary, and a detailed summary of their proposals and rec-
ommendations governing procurement of the net short energy
requirements for SDG&E’s customers. The utility requests a
15-day comment period, which means comments would have to
be filed by September 10 (September 8 is a Saturday). Reply
comments would be filed 10 days later.

Topic Probability
9 0.42
11 0.05
8 0.05

Figure 1.1: Example document from the Enron corpus and its association to topics.
Although it does not contain the word “California”, it discusses a single California
utility’s dissatisfaction with how much it is paying for electricity.

M × VM × K K × V ≈×

Topic Assignment

Topics

Dataset

Figure 1.2: Amatrix formulation of findingK topics for a dataset withM documents
and V unique words. While this view of topic modeling includes approaches such as
latent semantic analysis (lsa, where the approximation is based on svd), we focus
on probabilistic techniques in the rest of this survey.
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though we will focus on particular models and algorithms, we choose
our terminology to emphasize that the similarities between formulations,
models, and algorithms are often greater than their differences.

Topic modeling began with a linear algebra approach [Deerwester
et al., 1990] called latent semantic analysis (lsa): find the best low rank
approximation of a document-term matrix (Figure 1.2). While these
approaches have seen a resurgence in recent years [Anandkumar et al.,
2012, Arora et al., 2013], we focus on probabilistic approaches [Hofmann,
1999a, Papadimitriou et al., 2000, Blei et al., 2003], which are intuitive,
work well, and allow for easy extensions (as we see later in many of our
later chapters).

The two foundational probabilistic topic models are latent Dirichlet
allocation [Blei et al., 2003, lda] and probabilistic latent semantic
analysis [Hofmann, 1999a, plsa]. We describe the former in significant
detail in Chapter 1.4, but we want to take a moment to address some
of the historical connection between these two models.

plsa was historically first and laid the foundation for lda. plsa
was used extensively in many applications such as information retrieval.
However, this survey focuses on lda because more researchers have
not just used lda—they have also extended it. lda is not just widely
used, but it is also widely modified. Because of these prolific modifca-
tions, we focus on the mechanics of lda, which many researchers have
used as the foundations of new models. However, as we explain below
(Chapter 1.5.4), the similarities between plsa and lda outweigh the
differences.

In any technical field it is common for general terms to take on
specific, concrete meanings, and this can be a source of confusion. In
topic modeling the word “topic” takes on the specific meaning of a
probability distribution over words, while still alluding the to more
general meaning of a theme or subject of discourse. Because other
areas of information retrieval have similarly developed specific meanings
for the word “topic”, we distinguish them here. The most common
definition is a specific information need, as in the TREC evaluation
corpora developed by NIST [Voorhees and Harman, 2005]. TREC topics
are generally much more specific than topic model topics, and may relate
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Example Example
Distribution Density Parameters Draws

Gaussian 1√
2σ2π

e−
(x−µ)2

2σ2 µ = 2, σ2 = 1.1 x = 2.21

Discrete
∏
i φ

1[w=i]
i φ =

0.1
0.6
0.3

 w = 2

Dirichlet
∏K

i=1
Γ(αi)

Γ
(∑K

i=1
αi
) ∏K

i=1 θ
αi−1
i α =

1.1
0.1
0.1

 θ =

 0.8
0.15
0.05


Figure 1.3: Examples of probability distributions used in the generative stories
of topic models. In the case of the discrete draw, w = 2 denotes that the second
element (the one with probability 0.6) was drawn.

to particular aspects or perspectives on a subject. An example from
the 2003 TREC Robust Track is “Identify positive accomplishments of
the Hubble telescope since it was launched in 1991” [Voorhees, 2003].
Similarly to information retrieval, the related field of topic detection
and tracking also has a specific technical definition of “topic” [Allan,
2002]. In tdt, a “topic” is usually closer to an event or an individual
story. In contrast, topic models tend to identify more abstract latent
factors. For example, a tdt topic might include an earthquake in Haiti,
whereas a topic model might represent the same event as a combination
of topics such as Haiti, natural disasters, and international aid.

There has been some work on using topic models to detect emerging
events by searching for changes in topic probability [AlSumait et al.,
2008]. But these methods tend to identify mainly the fact that an event
has occurred, without necessarily identifying the specific features of that
event. Other work has found that more lexically specific methods than
topic models are best for identifying memes and viral phrases [Leskovec
et al., 2009].

1.3.1 Probabilistic Building Blocks

In probabilistic models we want to find values for unobserved model
variables that do a good job of explaining the observed data. The first
step in inference is to turn this process around, and assert a way to
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generate data given model variables. Probabilistic models thus begin
with a generative story: a recipe listing a sequence of random events
that creates the dataset we are trying to explain. Figure 1.3 lists some
of the key players in these stories, how they are parameterized and what
samples drawn from these distributions look like. We will briefly discuss
them, as we will use them to build a wide variety of topic models later.

Gaussian If you know any probability distribution already, it is (prob-
ably) the Gaussian. This distribution does not have a role in the most
basic topic models that we will discuss here, but it will later (e.g.,
Chapter 7). We include it because it is a useful point of comparison
against the other distributions we are using (since it is perhaps the
easiest to understand and best known). A Gaussian is a distribution
over all real numbers (e.g., 0.0, 0.5,−4.2, π, . . . ). You can ask it to spit
out a number, and it will give you some real number between negative
infinity and positive infinity. But not all numbers have equal probability.
Gaussian distributions are parameterized by a mean µ and variance σ2.
Most samples from the distribution will be near the mean µ; how close
is determined by the variance: higher variances will cause the samples
to be more spread out.

Discrete While Gaussian distributions are over a continuous space,
documents are combinations of discrete symbols, usually word tokens.2
Thus, we need a distribution over discrete sets.

A useful metaphor for thinking about discrete distributions is a
weighted die. The number of faces on the die is its dimension, and
each face is associated with a distinct outcome. Each face has its own
probability of how likely that outcome is; these probabilities are the
parameters of a discrete distribution (Figure 1.3).

Topic models are described by discrete distributions (sometimes
called multinomial distributions) that describe the connection between
words and topics (the first half) and topics and documents (the second

2An emerging trend in natural language processing research is to view words
as embedded in a continuous space. We discuss these “representation learning”
approaches and their connection to topic modeling in Chapter 10, but even then
models are still defined over a discrete set of words.
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half). A distribution over words is called a topic distribution; each of
the topics gives higher weights to some words more than others (e.g.,
in Topic 9 from the Enron corpus, “state” and “california” have higher
probability than other words). Each document also has an “allocation”
for each topic: documents are about a small handful of topics, and most
documents have very low weights for most of the possible topics.

Dirichlet Although discrete distributions are the star players in topic
models, they are not the end of the story. We often begin with Dirichlet
distributions. Just as Gaussians produce real numbers and discrete
distributions produce symbols from a finite set, Dirichlet distributions
produce probability vectors that can be used as the parameters of
discrete distributions. Like the Gaussian distribution, they have param-
eters analogous to a mean and variance. The mean is called the “base
measure” τ and is the expected value of the Dirichlet distribution: the
values you would get if you averaged many draws from the Dirichlet.
The concentration parameter α0 controls how far away individual draws
are from the base measure. We often combine these parameters into a
single value for each dimension: αk = α0τk.

If α0 is very large, then the draws from a Dirichlet will be very close
to τ (Figure 1.4, left). If α0 is small, however, the discrete distributions
become sparse (Figure 1.4, right). A sparse distribution is a distribution
where only a few values have high probability and all other values are
small.

Because topic models are meant to reflect the properties of real
documents, modeling sparsity is important. When a person sits down
to write a document, they only write about a handful of the topics
that they could potentially use. They do not write about every possible
topic, and the sparsity of Dirichlet distributions is the probabilistic tool
that encodes this intuition.

There are several important special cases of the Dirichlet distribution.
If the base measure τ is uniform, we call the resulting distribution
symmetric. This case is appropriate when we do not expect any one
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α = 10
τ = (.8, .2, .2)

α = 0.1
τ = (0.33, 0.33, 0.33)

α = 10
τ = (.2, .8, .2)

Figure 1.4: Given different Dirichlet parameters, the Dirichlet distribution can
either be informative (left, middle) or sparse (right). Sparse distributions encourage
distributions to favor a few elements but do not care which ones. This is consistent
with our intuitions of how documents are written: they are only about a few things,
and topics contain only a handful of words.

element to be, on average, more likely than any other element across all
samples from the distribution. In the symmetric case the distribution
has only one parameter, the concentration α0. If the base measure is
uniform and the concentration parameter α0 is equal to the number
of dimensions K (or, equivalently, αk = 1.0 for all k), the distribution
is uniform, placing equal probability on all K-dimensional probability
distributions.

1.4 Latent Dirichlet Allocation

We now have all the tools we need to tell the complete story of the most
popular topic model: latent Dirichlet allocation [Blei et al., 2003, lda].
Latent Dirichlet allocation3 posits a “generative process” about how
the data came to be. We assemble the probabilistic pieces to tell this
story about generating topics and how those topics are used to create

3The name lda is a play on lsa, its non-probabilistic forerunner (latent semantic
analysis). Latent because we use probabilistic inference to infer missing probabilistic
pieces of the generative story. Dirichlet because of the Dirichlet parameters encoding
sparsity. Allocation because the Dirichlet distribution encodes the prior for each
document’s allocation over topics.
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diverse documents.

Generating Topics The first part of the story is to create the topics.
The user specifies that there are K distinct topics. Each of the K topics
is drawn from a Dirichlet distribution with a uniform base distribution
and concentration parameter λ: φk ∼ Dir(λu). The discrete distribution
φk has a weight for every word in the vocabulary.

However, when we summarize topics (as in Figure ??), we typically
only use the top (most probable) words of a topic. The lower probability
words are less relevant to the topic and thus are not shown.

Document Allocations Document allocations are distributions over
topics for each document. This encodes what a document is about;
the sparsity of the Dirichlet distribution’s concentration parameter
α0 ensures that the document will only be about a few topics. Each
document has a discrete distribution over topic: θd ∼ Dir(αu).

Words in Context Now that we know what each document is about,
we create the words that appear in the document. We assume4 that
there are Nd words in document d. For each word n in the document d,
we first choose a topic assignment zd,n ∼ Discrete(θd). This is one of
the K topics that tells us which topic the word token is from, but not
what the word is.

To select which word we will see in the document, we draw from a
discrete distribution again. Given a word token’s topic assignment zd,n,
we draw from that topic to select the word: wd,n ∼ φzd,n

. The topic
assignment tells you what the word is about, and then this selects which
distribution over words we use to generate the word.

For example, consider the document in Figure 1.1. To generate it, we
choose a distribution over all of the topics. This is θ. For this document,
the distribution favors Topic 9 about California. The value for this topic
is higher than any other topic. For each word in the document, the

4We can model this in the generative story as well, e.g., with a Poisson distribution.
However, we often do not care about document lengths—only what the document is
about—so we can usually ignore this part of the story.
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generative process chooses a topic assignment zn. For this document,
any topic is theoretically possible, but we expect that most of those
will be Topic 9.

Then, for each token in the document, we need to choose which word
type will appear. This comes from Topic 9’s distribution over words
(multiple topics have word distributions shown in Figure ??). Each is a
discrete draw from the topic’s word distribution, which makes words
like “California”, “state”, and “Sacramento” more likely.

It goes without saying that the generative story is a fiction [Box
and Draper, 1987]. Nobody is sitting down with dice to decide what to
type in on their keyboard. We use this story because it is useful. This
fanciful story about randomly choosing a topic for each word can help
us because if we assume this generative process, we can work backwards
to find the topics that explain how a document collection was created:
every word, every document, gets associated with these underlying
topics.

This simple model helps us order our document collection: by assum-
ing this story, we can discover topics (which certainly do not exist) so we
can understand the common themes that people use to write documents.
As we will see in later chapters, slight tweaks of this generative story
allow us to uncover more complicated structures: how authors prefer
specific topics, how topics change, or how topics can be used across
languages.

1.5 Inference

Given a generative model and some data, the process of uncovering the
hidden pieces of the probabilistic generative story is called inference.
More concretely, it is a recipe for generating algorithms to go from data
to topics that explain a dataset.

There are many flavors of algorithms for posterior inference: message
passing [Zeng et al., 2013], variational inference [Blei et al., 2003],
gradient descent [Hoffman et al., 2010], and Gibbs sampling [Griffiths
and Steyvers, 2004]. All of these algorithms have their advocates and
reasons you should use them. In this survey, we focus on Gibbs sampling,
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which is simple, intuitive, and—with some clever tricks specific to topic
models—fast [Yao et al., 2009]. (We discuss variational inference in
Chapter 9.)

We present the results of Gibbs sampling without derivation, which—
along with the history of its origin in statistical physics—are well
described elsewhere.5 We use a variety of Gibbs sampling called collapsed
Gibbs sampling, which allows inference to side-step some of the pieces
of the generative story: instead of explicitly representing the parameters
of a discrete distribution, distinct from any observations drawn from
that distribution, we represent the distribution solely through those
observations. We can then recreate the topic and document distributions
through simple formulas.

1.5.1 Random Variables

Topic Assignments Since every individual token is assumed to be
generated from a single topic, we can consider the topic assignment of a
token as a variable. For example, an instance of the word “compilation”
might be in a computer topic in one document and in an arts topic in
another document. Because each token has its own topic assignment,
it is even possible that the same word might be assigned to different
topics in the same document. To estimate global properties of the topic
model we use aggregate statistics derived from these token-level topic
assignments.

Document Allocation The document allocation is a distribution over
the topics for each document; in other words, it says how popular each
topic is in a document. If we count up how often a document uses a
topic, this gives us an idea of the popularity. Let’s define Nd,i as the
number of times document d uses topic i. This is larger for more popular
topics; however, it is not a probability because it is larger than one.
We can make it a probability by dividing by the number of words in a

5We recommend Resnik and Hardisty [2009] for additional information on deriva-
tion.
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document
Nd,i∑
kNd,k

, (1.1)

but this is problematic because it can sometimes give us zero and ignores
the influence of the Dirichlet distribution; a better estimate is6

θd,i ≈
Nd,i + αi∑
kNd,k + αk

. (1.2)

This must never become zero because we do not want it to rule out the
possibility that a topic is used in a particular document (hence, each α
must be non-zero). This helps the sampler explore more of the possible
combinations.

Topics Each topic is a distribution over words. To understand what a
topic is about, we look at the profile of all of the tokens that have been
assigned to that topic. We estimate the probability of a word in a topic
as

φi,v ≈
Vi,v + βv∑
w Vi,w + βw

, (1.3)

where β is the Dirichlet parameter for the topic distribution.

1.5.2 Algorithm

The collapsed Gibbs sampling algorithm for learning a topic model
is only based on the topic assignments, but we will use our estimates
for the topics φk and the documents θd discussed above. We begin by
setting topic assignments randomly: if we have K topics, each word has
equal chance to be associated with any of the topics. These topics will
be quite bad, looking like noisy copies of the overall corpus distribution.
But we will improve them one word at a time.

The algorithm proceeds by sweeping over all word tokens in turn
over and over. At each iteration we change the topic assignments for
each word in a way the reflects the underlying probabilistic model of
the data. On average, each pass over the data makes the topics slightly

6To be technical, Equation 1.1 is a maximum likelihood estimate and Equation 1.2
is the maximum a posteriori, which incorporates the influence of both the prior and
the data.
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better until the model reaches a steady state. There is no easy way to
tell when such a steady state has been reached, but eventually the topics
will “converge” to reasonable themes and you can consider yourself done.

The equation for the probability of assigning a word to a particular
topic combines information about words and about documents7

p(zd,n = i | . . . ) = θdφji =
(

Nd,i + αi∑
kNd,k + αk

)(
Vi,wd,n

+ βv∑
w Vi,w + βw

)
. (1.4)

Computing this value for each topic will result in a probability distribu-
tion over the topic assignment for this word token, given all the other
topic assignments. The next step is to randomly choose one of those
indices with probability proportional to the vector value. You now assign
that word to the topic, update Nd,· and V·,wd,n

, and move on to the next
word and repeat. The two terms provide two “pressures”, for global
and local coherence. Sparsity in the topic-word distributions encourages
tokens of the same word type to be assigned to a small number of
topics, regardless of where they occur. Sparsity in the document-topic
distributions encourages tokens in the same document to be assigned to
a small number of topics, regardless of what type they are. For exam-
ple, knowing that a word is “compilation” narrows down the number
of potential topics considerably, but leaves ambiguity: is it computer
compilation or a music compilation? Knowing that the word occurs
in a document with many other words in the arts topic resolves this
ambiguity, leaving the arts topic as the most probable assignment.

At the very end of the algorithm, we can use the estimates of each
topic (Equation 1.3) to summarize the main themes of the corpus and
the estimates of each document’s topic distribution (Equation 1.2) to
start exploring the collection automatically (Chapter 2) or with a human
in the loop (Chapter 3).

The algorithm that we have sketched here is the foundation of
many of the more advanced models that we will discuss later in the
survey. While we will not describe the algorithms in detail, we will

7To be theoretically correct, it is important not to include the count associated
with the token you are sampling in these counts, which becomes more clear if the
probability is written as p(zd,n = j | zd,1 . . . zd,n−1, zd,n+1 . . . zd,Nd , wd,n) to show the
dependence on the topic assignments of all other tokens but not this token.
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Figure 1.5: Plate diagram for lda. Nodes show random variables, lines show
(possible) probabilistic dependence, rectangles show repetition, and shading shows
observation.

occasionally reference this sketch to highlight challenges or difficulties
in implementing topic models.

1.5.3 Plate Diagrams

Plate diagrams provide a shorthand for quickly explaining which random
variables are associated with each other. If you look up many of the
references used in this survey, you will likely see plate diagrams (we
also use a plate diagram later in Figure 2.1b).

Let’s begin with a plate diagram for lda (Figure 1.5). You can
compare these to the generative story in Chapter 1.4. All of the random
variables are there, each in its own circle. The lines between random
variables tell more of the story. You can see that if a random variable
is conditioned on another, there is a line going from the variable that
is conditioned on to the variable that is conditionally dependent. For
example, a word depends on the token assignment zd,n and a topic φk,
so we draw lines from both.

You can think about the rectangular boxes as repetition. The letter
in the bottom right of the box shows how often what is inside the box
is replicated. There is a box for each document (there are M in total)
and each token (the box of words is inside the box for documents).

When a variable is shaded, this means that it is observed. These are
the data we start with. The unshaded variables must either be inferred
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(e.g., topics φ) or are hyperparameters that must be set or inferred (e.g.,
Dirichlet parameter α).

Plate diagrams allow a reader to quickly see a “family resemblance”
between related models, and once someone has become fully immersed
in topic models, it is often possible to at a glance understand a model
from its plate diagram. However, plate diagrams are imperfect; they
lack some of the key information you need to understand the model.
For instance, the exact probabilistic relationship between variables is
underspecified.

1.5.4 What is so Great about Dirichlet?

Now that we have described what lda is, we can return to its history.
What is the innovation that separates lda from plsa, its predecessor?
Naïvely, the difference is changing an “s” to a “d” (i.e., changing plSa
to lDa). The deeper story is about as consequential.

Instead of having a Dirichlet prior over θ, plsa assumes that θ is
a discrete parameter. In practice, this means that documents are not
encouraged to focus on a limited number of topics and often “spread
out” to have small weights for many different topics. In theory, this
means that there is not as sound a generative story for how a document
came to be: you cannot run the generative process forward from scratch
if you must have θ as a parameter to start with.

These differences are relatively minor. lda has slightly easier
inference—particularly when it comes to tweaking the model—which
has caused it to become the more popular of the two models. Thus,
we will focus on comparing models to lda. This is not to diminish
from plsa and its unquestionable place in the literature, but it helps
us present a more unified narrative for our reader.

1.5.5 Implementations

Hopefully the previous algorithm sketch has convinced you that imple-
menting topic models is not a Herculean task; most skilled programmers
can complete a reasonable implementation of topic models in less than
a day. However, we would suggest not trying to implement basic lda if
you just want the output of a topic model, many solid implementations
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can help users get to useful results more quickly, particularly as topic
models often require extensive preprocessing.

Mallet is fast and is a widely used implementation in Java [McCallum,
2002]. This is where you should probably start, in our biased opinion.
It runs in Java, uses highly-optimized Gibbs sampling implementations,
and can work from a variety of text inputs. It is well documented,
mature, and runs well on a multi-core machine, allowing it to process
up to millions of documents. Variational inference is the other major
option [Blei et al., 2003, Langford et al., 2007], but often requires a
little more effort for new users to get a first result.

However, not all users are comfortable with Java; many implemen-
tations are available on other platforms and in many programming
languages.8 Many of these implementations are well-built, but check
whether they have all of the features of mature implementations like
Mallet so that you know what (if anything) you’re missing.

However, if your corpus is truly large, consider techniques that can
be parallelized over large computer clusters. These techniques can be
based on variational inference [Narayanamurthy, 2011, Zhai et al., 2012]
or on sampling [Newman et al., 2008].

While these implementations allow you to run specific topic models,
other frameworks allow you to specify arbitrary generative models. This
enables quick prototyping of topic models and integrating topic models
with other probabilistic frameworks like regression or collaborative
filtering. Examples of these general frameworks include Stan [Stan
Development Team, 2014], Theano [Theano Development Team, 2016],
and Infer.net [Minka et al., 2014].

If you cannot find the specific model that you want among these
existing software packages, the flexibility and simplicity of topic models
and inference makes it relatively simple to adapt topic models to model
specific phenomena (as we describe in following chapters).

8So many that change so quickly; thus, we are reluctant endorse specific ones
here.
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1.6 The Rest of this Survey

In each of the following chapters, we focus on an application of topic
models, gradually increasing the complexity of the underlying models.
The chapters do occasionally refer to each other, but a reader should
be able to read each of the chapters independently.

The next chapter returns to the distinction between high level
overviews and finding a needle in a haystack. We show how a high level
overview can help users and algorithms find documents of interest. We
show how a high level overview can help algorithms (Chapter 2) and
users (Chapter 3) find documents of interest.

These tools help enable new applications of topic models: how under-
standing newspapers (Chapter 4) reveals the march of history, how the
corpus of writers of fiction (Chapter 6) illuminates societal norms, how
the writings of science reveal innovation (Chapter 5), or how politicians’
speeches (Chapter 7) reveal schisms in political organizations.

Finally, the survey closes with thoughts about how interested re-
searchers can start building their own topic models (Chapter 9) and
how topic models may change in the future (Chapter 10).



2
Ad-hoc Information Retrieval

Topic models explore and summarize document collections outside the
context of any specific information need, when we do not necessarily
know what we are looking for. This approach to information retrieval
stands in contrast to traditional ir systems, which retrieve relevant
documents given users’ explicit information needs. Where ir systems
might look for the “needle in the haystack”, topic models will tell you
about the overall proportion of hay and needles, and perhaps inform
you about the mice that you did not know were there. But topic models
can also be useful in situations when we do have a specific information
need, but we do not quite know how to search for it. Despite their
differences in purpose, there are strong mathematical and conceptual
connections between these two approaches. In this chapter we consider
the use of topic modeling in ir to balance specific user queries with
more open-ended discovery.

In the most direct sense, topic models can be used as a simple
indexing method. Users can find topics that assign high probability to a
particular query term, and then find documents with a high probability
of these topics. Such topic-based search may additionally provide some
level of query disambiguation, since it may be clear from topic-word

21
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distributions that one or another topic is more relevant to the user’s
information need. More sophisticated approaches blur the boundary
between query-driven retrieval and unsupervised topic modeling. Erlin
[2017] searches for passages related to epistemology in English and
German books by “seeding” topic models with words thought to be
relevant to that subject. This approach can be successful, but does not
guarantee that relevant topics will be found, or that topics will match
the intended subject.

In the more formal ad-hoc retrieval setting, users start with an
information need expressed in queries. Many ir systems treat both the
queries and documents as “bags of words”, and retrieve and rank the
documents by measuring the word overlap between queries and docu-
ments. However, the ability of this direct and simple matching is always
limited. Words with similar meaning or in different forms should also be
considered as matched instead of being ignored. Language modeling
has been one of the most popular frameworks to capture such semantic
relationships. But humans would also like to use background knowledge
to interpret and understand the queries and “add” missing words [Wei,
2007], which provides another approach called query expansion to
improve retrieval and ranking results.

Both directions can be pursued by learning and discovering the
semantic relations between words and, further, the semantic relations
between queries and documents. Topic models provide semantic relations
between query words and documents [Deerwester et al., 1990, Hofmann,
1999b] by describing each topic using probabilistically-weighted words
and modeling each document as a distribution over all topics. This adds
a layer of abstraction between a document and the exact words present
in that document. Appealing to the generative “story” of a model, we
want to recover the words that could have been available to an author
based on the words that were chosen. Such semantic relations can be
applied to smoothing the language models, or introducing related words
in query expansion. This chapter focuses on how to apply topic models
in document language modeling [Lu et al., 2011, Wei and Croft, 2006]
and query expansion [Park and Ramamohanarao, 2009, Andrzejewski
and Buttler, 2011] to further improve ranking results of information
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retrieval.

2.1 Document Language Modeling

The language modeling approach [Ponte and Croft, 1998, Song and
Croft, 1999, Croft and Lafferty, 2003] is one of the main frameworks for
using topic models in ir systems, since it is an effective probabilistic
framework for studying information retrieval problems [Ponte and Croft,
1998, Berger and Lafferty, 1999]. A statistical language model estimates
the probability of word sequences, denoted as p(w1, w2, · · · , wn). In
practice, the statistical language model is often approximated by n-
gram models. A unigram model assumes each word in the sequence is
independent,

p(w1, w2, · · · , wn) = p(w1)p(w2) · · · p(wn) (2.1)

A trigram model assumes the probability of the current word only
depends on the previous two words, and it is represented as

p(w1, · · · , wn) = p(w1)p(w2|w1)p(w3|w1, w2) · · · p(wn|wn−2, wn−1).
(2.2)

In the application of information retrieval, the likelihood of queries
are estimated given a probabilistic language model based on a docu-
ment [Zhai and Lafferty, 2001a]. More specifically, each document is
viewed as a language sample, and a language model for each document is
estimated based on document terms. Then the probability of generating
a query is estimated by multiplying the probabilities of generating each
query term using a document language model, and the documents are
ranked based on the probability.

Given a document sample d, a straightforward way to estimate
the probability of generating a word w is to use maximum likelihood
estimation

pml(w | d) = nd,w
nd,·

(2.3)

where nd,w is the term frequency of word w in document d, and nd,·
is the total number of tokens in document d. Then the probability of
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generating the given query q is

p(q | d) =
∏
w∈q

p(w | d) =
∏
w∈q

nd,w
nd,·

. (2.4)

Then the documents are ranked based on this probability p(q | d).
Higher probability implies the corresponding document is more relevant
to the given query [Song and Croft, 1999]. However, a document often
contains limited number of words and maximum likelihood estimation
gives zero probability to those unseen words. If a query contains any
word not in the document, the probability of generating the whole
query given this document is zero, which may throw out perfectly good
documents.

This data sparsity problem can be fixed by smoothing, which allo-
cates some non-zero probability to the missing terms. Another solution—
which also provides other benefits—is topic models. They provide a
unique way to extract the word probabilities given the corpus, which
can be used to smooth document language models. We summarize two
simple smoothing methods, and then show how topic models fit into
this smoothing framework.

There are two major directions for smoothing: interpolation [Je-
linek and Mercer, 1980, Mackay and Petoy, 1995, Ney et al., 1994, Ponte
and Croft, 1998, Zhai and Lafferty, 2001a] and backoff [Katz, 1987,
Song and Croft, 1999]. The interpolation-based method discounts the
counts of the seen words and distribute the extra counts to both seen
words and unseen words. An alternative backoff smoothing strategy
trusts the maximum likelihood estimation for high count words, dis-
counts and redistributes mass only for the less common words [Zhai
and Lafferty, 2001a].

Here we review two popular and simple interpolation smoothing
methods, which are further extended with topic models to smooth
document language models.

Jelinek-Mercer The Jelinek-Mercer method [Jelinek and Mercer, 1980]
is a linear interpolation of the maximum likelihood model in a document
with the model based on the whole corpus, and a coefficient λ combines
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the two parts:

p(w|d) = (1− λ)pml(w|d) + λp(w|C), (2.5)

where C denotes the whole corpus. This simple mixture solves the data
sparsity problem. For terms that occur in the document d, the maximum
likelihood estimator (Equation 2.3) is not accurate given the limited size
of a document, thus it is smoothed with the more reliable corpus level
probability. For a missing term w in the document d, the probability of
generating word w is not zero any more, but falls back to the corpus
level probability p(w|C). This smoothing method has been explored
and successfully applied in information retrieval tasks [Ponte and Croft,
1998, Song and Croft, 1999].

Bayesian Smoothing using Dirichlet Priors A language model can be
viewed as a discrete distribution, thus it can be smoothed by applying
the Dirichlet distribution as the conjugate prior [Mackay and Petoy,
1995]. We made a similar observation in the previous chapter comparing
Equation 1.1 and Equation 1.2; the same intuition can be extended
through multiple layers of discrete distributions with Dirichlet priors
to create a smoothing model. Intuitively, this smoothing adds an extra
prior count for each word to smooth the probability of unseen words,

p(w | d) = nd,w + βp(w|C)∑
v∈V nd,v + β

, (2.6)

where the Dirichlet prior is decided by concentration parameter β and
the corpus-level probabilities p(v | C),

(βp(v1 | C), βp(v2 | C), · · · , βp(vn | C)). (2.7)

2.2 Applying Topic Models to Document Language Models

Topic models, which model each document as a mixture of topics and
each topic as a mixture of words, offer an interesting framework to
model documents in information retrieval. Popular topic models such
as probabilistic latent semantic analysis (plsa) and latent Dirichlet
allocation (lda) have been both explored to improve document language
models.
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Hofmann [1999b] introduces plsa to to learn the relationship be-
tween query words and documents, and the conditional probability of
a query word w given a document d is computed as marginalizing all
topics k,

pTM(w | d) =
∑
k

p(w | k)p(k | d) (2.8)

Following this idea, Wang et al. [2013] further add regularizations—
changing the shape of distributions to be more or less spread out—on
document topic representations which is useful for retrieval. Instead
of using plsa, Wei and Croft [2006] apply the same idea to learn the
topic-smoothed document-word distribution using lda. Vosecky et al.
[2014] also explore lda for document language models on twitter search.

Because the posterior estimates for topics are smoothed by the
Dirichlet priors, topic models learn a better and smoothed semantic
relationship between document words and documents. As a result, even
though this approach loosens the connection between query words
and documents, it is a good approach to complement the original
document language models. Thus Wei and Croft [2006] further propose
to combine the lda-based document model with the original document
model (Equation 2.5) through a linear interpolation,

p(w | d) = λ′
(
(1− λ)pml(w | d) + λp(w | C)

)
+ (1− λ′)pTM(w|d) (2.9)

where λ′ is the coefficient which combines the LDA-based document
model with the general smoothed language model.

Following Wei and Croft [2006], Lu et al. [2011] further evaluate
the performance of applying topic models into the document language
model framework. Instead of combining with the language model with
Jelinek-Mercer smoothing (Equation 2.5), Lu et al. [2011] smooth the
document language model with Bayesian smoothing (Equation 2.7),
and the final linear combination with topic models

p(w | d) = λ
nd,w + βp(w | C)∑

v∈V nd,v + β
+ (1− λ)pTM(w | d) (2.10)

While using different smoothing strategies, both approaches apply
topic models to connect the query words with documents through
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hidden topics. As the example shown in Wei and Croft [2006], given a
query “buyout leverage”, a relevant document talks about “Farley Unit
Defaults On Pepperell Buyout Loan” without the exact word “leverage”,
thus the ranking for this relevant document is very low. However, topic
models connect this document with two topics that that have strong
connections with the term “leverage”: one economic topic contain words
like “million”, “company” and “bankruptcy”, and the other money
market topic is connected to “bond”. Since a better semantic relationship
between the query and the document is learned, this relevant document
is ranked much higher and the retrieval performance improves.

2.3 Query Expansion in Information Retrieval

The document language models in information retrieval [Ponte and
Croft, 1998] attempt to model the query generation process based on
the document models. However, a big problem is that these models
abandon modeling the query-document relevance explicitly [Lavrenko
and Croft, 2001], which is important in traditional information retrieval
tasks.

In fact, queries, which are normally brief and using informal language
from users, diverge significantly from the language in documents [Müller
and Gurevych, 2009]. This semantic gap or lexical gap can result in
perceived poor query-document relevance, even though the document
is quite relevant from the users’ view point. For example, after typing
in “apple products” to a search engine, a frustrated user might append
“computer” to the query after faced with a screen of fruit-based search
results.

Query expansion tries to automatically simulate a similar process
to prevent this frustration. Query expansion normally analyzes the
relationships between the query words and other words and tries to find
potential related words so that the original query is better represented;
thus improving better query-document relevance. For example, with-
out much context, the query “dtd amc” is hard to understand [Jiang
et al., 2016]. Through query expansion, it is possible to build up the
relationship between “dtd” and “disneyland downtown”, which is more
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helpful in document retrieval. Next, this section reviews the classic
query expansion frameworks in information retrieval, and the related
works about using topic models for query expansion are introduced in
the next section.

2.3.1 Learning Query-Word Relationships for Query Expansion

There are two main steps for query expansion. The first step is to find the
relationships between queries and words and select the top related words
to expand the query. The second step is to apply the expanded queries
for ranking and compute the final ranking relevance scores. We start with
the first step. Two major directions have been explored: query language
models [Zhai and Lafferty, 2001b] and relevance models [Lavrenko and
Croft, 2001].

Query Language Model To learn the query-word relationship, Zhai
and Lafferty [2001b] build up a query language model to estimate the
probability p(w | q) of a word w given a query q. However, it is not easy
to learn a good query language model since the query content is too
limited.

Zhai and Lafferty [2001b] propose to use both the query content and
the relevant documents F (sometimes referred as feedback documents
or clicked documents) to estimate the query language model. Let θ̂F be
the estimated query language model based on the relevant documents
and θ̂Q is the original query language model estimated purely based on
queries, the combined query model θ̂Q′ is

θ̂Q′ = (1− λ)θ̂Q + λθ̂F (2.11)

Estimating θ̂Q is obvious based on query words, and θ̂F can also be
simply estimated by a unigram language model θ which generates each
word in F independently. However, most documents contain not only
the query relevant information, but also the background information.
As a result, Zhai and Lafferty [2001b] propose to generate a relevant
document by a mixture model, which combines a language model p(w | θ)
with a collection language model p(w | C), and the log-likelihood of the
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relevant document is,

log p(F | θ) =
∑
i

∑
w

ndi,w log((1− λ′)p(w|θ) + λ′p(w | C)) (2.12)

where ndi,w is count of word w in document di. By combing information
from relevant documents, the query language model is more robust,
thus query-word relationships are better represented.

Relevance Model Unlike the query language model approach,
Lavrenko and Croft [2001] assume both the query and the relevant
documents are random samples from an unknown relevance model R.
Given the query q, they approximate the probability p(w |R) based on
the observed query q as

p(w |R) ≈ p(w | q) = p(w, q)
p(q) . (2.13)

To estimate the joint probability p(w, q), Lavrenko and Croft [2001]
assumes the word w and the query q are sampled independently from
the same distribution, e.g., from a unigram distribution, then the joint
probability is

p(w, q) =
∑
d∈C

p(d)p(w, q|d) =
∑
d∈C

p(d)p(w | d)p(q | d). (2.14)

Then the discrete distribution p(w | q) for a given query q is

p(w | q) = p(w, q)
p(q) =

∑
d∈C

p(w | d)p(d | | q). (2.15)

Both the query language model and the relevance model capture
the relationship between the query and other words, based on which
the top related words can be selected for query expansion.

2.3.2 Ranking Relevance with Query Expansion

Given the related words for query expansion, the next question is how
to apply the expanded queries for computing the final ranking relevance
score. The combination can happen either before or after the relevance
score is computed.
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Zhai and Lafferty [2001b] combine the expanded query language
model θ̂F with the original query language model θ̂Q as one query
language model θ̂Q′ (Equation 2.11). Given a query q generated from
the expanded query model p(q | θ̂Q′), and a document d generated
from a document model p(d | θ̂D), they compare how similar the topic
distributions are between these two “documents” are.

In contrast to Zhai and Lafferty [2001b], Lavrenko and Croft [2001]
compute the relevance score using the original query and the expanded
query respectively, and then linearly combine the two scores. Thus the
final query-document relevance ŝd(q) is computed as,

ŝd(q) = λsd(e) + (1− λ)sd(q) (2.16)

where sd(q) is the relevance between the original query q and documents
d, and sd(e) is relevance between the expanded query terms e and
document d.

2.4 Applying Topic Models For Query Expansion

Topic models capture the semantic relationships of words through learn-
ing the latent topics, which are presented as distributions over different
words. Such semantic relationships among words provide a unique way
to match or expand words at the semantic level rather than by a di-
rect spelling matching. For example, given a short query “diabetes”,
topic models can easily find the related words such as “insulin”, “glu-
cose”, “coronary” and “metformin” etc., as they often occur in the
same context [Zeng et al., 2012]. As a result, topic models have been
successfully applied into query expansion [Yi and Allan, 2009, Park and
Ramamohanarao, 2009, Zeng et al., 2012].

Smoothing Query Language Model The most intuitive way to use
topic models for query expansion is to extract the words’ relevance from
topics directly as Yi and Allan [2009]. They train a topic model, from
which the probability pTM(k | q) of a topic k in a query q is learned. Then
the query-word relevance p(w | q) is computed based on topics:

p(w | q) =
∑
k

pTM(w | k)pTM(k | q). (2.17)
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This query-word relevance p(w | q) from topic models smooths the
original query language model through linear interpolation. However,
queries are normally too short to learn meaningful topics, thus the
quality of query-word relevance is relatively limited. To improve the
quality of extracted topics, Yi and Allan [2009] also train topic models
from the relevant documents (e.g., top documents retrieved by a query),
and extract the query-word relationships based on the Equation 2.17
for query expansion.

Improving Relevance Model In addition to this direct approach, Yi
and Allan [2009] also apply topic models to improve the relevance model
in Equation 2.15 for query expansion. In this approach, topic models
capture the document-word relationship p(w | d) given the query q as

pTM(w | d, q) =
∑
k

p(w | k)p(k | d, q) (2.18)

where,

p(k|d, q) = p(k|d)p(q|k)
p(q|d) ≈ p(k|d)p(q|k) (2.19)

where p(k | d) is the topic probability in document d, and p(q | k) is the
probability of generating a query q given the topic k. Then the topic-
based document-word relationship pTM(w | d, q) is applied to smooth
the document-word relationship p(w | d) in the relevance model (Equa-
tion 2.15) through a linear interpolation,

p(w | q) =
∑
d∈C

(λp(w | d) + (1− λ)pTM(w | d, q))p(d | q) (2.20)

where λ is a constant weight to combine the original relevance model
and the topic-based relevance model. Because the topic models capture
the word relationships on a semantic level, this improved relevance
model better captures the query-word relationships and improve query
expansion.

Learning Pair-wise Word Relationships Park and Ramamohanarao
[2009] also apply topic models for query expansion but in a different
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way. They model the pair-wise relationships between words through
topic models and then apply it for query expansion. More specifically,
based on the topics extracted from topic models, they compute the
probabilistic relationships of each word pair (wx, wy),

p(wx |wy, α) =
∑
k

p(wx, k |wy, α) (2.21)

=
∑
k

p(wx | k, α)p(k |wy, α)

where α is the concentration parameter of the Dirichlet prior for
document-topic distributions and p(wx | k, α) is the probability of word
wx in topic k which can be learned from topic models, and p(k |wy, α)
is

p(k |wy, α) = p(wy|k, α)p(k|α)∑
k′ p(wy|k′, α)p(k′ |α)

where p(wy | k, α) is the probability of word wy in topic k. Park and
Ramamohanarao [2009] also show that p(k|α) = αk∑

j
αj
. As a result, we

have,

p(k|wy, α) = p(wy | k, α)αk∑
k′ p(wy|k′, α)αk′

The final probabilistic relationships of each term pair can be repre-
sented as

p(wx|wy, α) =
∑
k p(wx|k, α)p(wy|k, α)αk∑

k′ p(wy|k′, α)αk′
(2.22)

Once this term relationship is obtained, they choose the top related
terms as the expanded terms e for the given query q, and the final
document ranking score is computed as Equation 2.16.

Interactive Feedback Relevance feedback involves the users in the
retrieval process to improve the ranking result set [Rocchio, 1971]. The
basic idea is to ask users to give feedback on the relevance of documents
in an initial set of retrieval results, and users’ feedback on relevance is
further used to improve the ranking results. This process can go through
one or more iterations.
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Table 2.1: Given query “euro opposition”, seven topics are selected and shown to a
user. The user selected Topic 79 as the feedback topic (Example from Andrzejewski
and Buttler [2011]).

Topic Terms
196 (debate) Tory Euro sceptics, social chapter, Liberal Democrat, mps,

Labour, bill, Commons
404 (ratification) ratification Masstricht treaty, Poul Schluter, Poul Rasmussen,

Danish, vote, Denmark, ec
79 (Emu) economic monetary union, Masstricht treaty, member states,

European, Europe, Community, Emu
377 (George) President George Bush, White House, Mr Clinton, administration
115 (power) de regulation bill, Sunday trading, Queen Speech, law, legislation,

government, act
446 (years) chairman chief executive, managing director, finance director,

Sir, board, group, company
431 (cabinet) Mr John Major, prime minister, Mr Major, party, tory, govern-

ment, Conservative

Andrzejewski and Buttler [2011] present a new framework for ob-
taining and exploiting user feedback at the latent topic level. They
learn the latent topics from the whole corpus and construct meaningful
topic representations. At query time, they decide which latent topics
are potentially relevant and present the topic representations along
keyword search results. When a user select a latent topic, the original
query is expanded with the top words in this selected topic, and the
search results are refined. Andrzejewski and Buttler [2011] use the query
“euro opposition” as an example: users want to find documents about
opposition to the introduction of the single European currency. 500
topics are learned using the corpus and relevance judgements. Seven of
the 500 topics are selected to show to users as shown in Table 2.1 and
the user select the Topic 79 as the user feedback. Using the top terms
in Topic 79 as the expanded query terms, the ranking of the relevant
documents improves.

This direction is related to topic labeling and interactive visualization
for topic models, which will be further discussed in Chapter 3.
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2.5 Beyond Relevance—Search Personalization

Traditional search systems retrieve documents based on the queries
only, regardless of who submitted the queries. As more Web pages
become available, queries are normally too short to express users’ needs,
and users may prefer different results even the input queries are the
same [Jansen et al., 2000, Dou et al., 2007]. As the examples shown in
Dou et al. [2007], the query “mouse” may mean “rodents” for biologists,
while the programmers may use the same query to search for computer
peripherals. Even for queries without ambiguity, for example “online
shopping”, some users may prefer “www.amazon.com” while others may
prefer “www.ebay.com”.

Understanding users’ preference and context helps meet their infor-
mation needs. Thus, ir systems must adapt the ranking results [Pitkow
et al., 2002, Micarelli et al., 2007]. This is referred as personalized search,
or search personalization.

There are multiple ways to do search personalization, and two of
major directions are normally referred as contextualization [Melucci,
2012] and individualization [Pitkow et al., 2002]. The former is to
consider users’ conditions in a search activity, for example, time and
location. The latter focuses more on users’ individual characteristics and
activities, which is also described as the users’ profile. Topic models have
been investigated to model users’ preference on the topic space [Song
et al., 2010, Carman et al., 2010].

Modeling Users’ Preference via the Output Topics Song et al. [2010]
apply topic models to model users’ preference from users’ search history.
The idea is very similar to smoothing query language models p(w | q) by
topic models, as explained in Equation 2.17. The estimation of p(w | q)
is split into two parts p(w | k) and p(k | q).

For each users’ query, they concatenate the clicked documents (or
the top n ranked documents if no click happened) as a big preference
document. Then the topic model plsa is applied on the preference
collection to extract the latent topics as users’ preference (p(w | k) in
the Equation 2.17). The second part is to estimate the query-topic
distribution p(k | q) in Equation 2.17. However, the queries are too

www.amazon.com
www.ebay.com
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(a) (b)

Figure 2.1: The plate diagrams for personalized retrieval in Figure 2.1a and the
actual simplified model used for parameter estimation in Figure 2.1b (Both figures
from Harvey et al. [2013].)

short to estimate the query topics directly. Instead, they first estimate
a language model θq from the big preference document of query q

and compare the cosine similarity against each topic to estimate the
query-topic distribution p(k | q),

p(k | q) = p(k, q)∑
k p(k, q)

≈ sim(θk, θq)∑
k sim(θk, θq)

. (2.23)

This can then direct the user to documents that match the user’s
interests (e.g., that match those topics well).

Encoding Users into Topic Models Carman et al. [2010] also inves-
tigate topic models on large query logs for search personalization and
propose a personalization topic model as shown in Figure 2.1a. The
idea is given the topic distribution of the document, there will be words
chosen at random to generate the query and users who chose to click
that document.

As shown in Figure 2.1a (this uses plate diagram formalism, ex-
plained in Chapter 1.5.3), this model has three observed variables,
document di, query word wi and user ui. Given a topic k sampled
from a discrete distribution θd, the corresponding query words wi are
sampled from a topic-word discrete distribution φk and the user ui who
submitted the corresponding query is sampled from a topic-user discrete
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distribution ψk.
To estimate the probability of p(k |wi, di, ui), they further assume

the conditional independence among the word wi, the user ui and
document di given the topic k, and the model can be simplified as

p(k |wi, di, ui) = p(k,wi, ui | di)
p(wi, ui|di)

∝ p(wi | k)p(ui | k)p(k | di). (2.24)

By directly including the user in the topic model, this model assumes
the user’s topical interests for describing a document that the user
clicked is equally important as the words to describe the document.
This assumption is too strong [Carman et al., 2010]. As a result, Harvey
et al. [2013] further propose to ignore the user during inference and
simplify the model (Figure 2.1b). In this model, the topics are used
to infer the topic-user distribution p(ui|k) once the Markov chain is
converged. The intuition is to capture the idea that a user clicks on a
document given a specific query due to his/her interests expressed over
the topic space [Harvey et al., 2013].

Based on the estimates of this personalized topic model, the doc-
uments are ranked by the likelihood given the query and the user as
follows,

p(d | q, u) ∝ p(d)
∏
w∈q

p(w, u | d) (2.25)

∝ p(d)
∏
w∈q

∑
k

p(w | k)p(u|k)p(k | d)

By subtly incorporating users’ profiles as part of the ranking algorithms,
Harvey et al. [2013] significantly improved the personalized ranked
document lists than the non personalized baselines.

2.6 Summary

Because topic models analyze documents on a semantic level, they offer
an interesting and unique framework for modeling relationships between
words, and between documents and words. As a result, topic models
have been successfully applied in smoothing language models, query
expansion and search personalization.
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There is also some work focusing on the diversification of search
results [Dang and Croft, 2013, Santos et al., 2015]. The goal of search
result diversification is to identify the different aspects of the ambiguous
query, retrieve documents for each aspect and make the search results
contain more varied documents [Dang and Croft, 2013]. Personalization
and diversification are orthogonal, and can be combined in unified
models [Vallet and Castells, 2012, Liang et al., 2014].

These successful applications on information retrieval are based
on a good understanding of the outputs of topic models. In the next
chapter, we will introduce how to visualize, label, and evaluate topics
to help users better understand topics and how they are expressed in
collections.



3
Evaluation and Interpretation

While the previous chapter focuses on algorithmic uses of topic mod-
els, one of the reasons for using topic models is that they produce
human-readable summaries of the themes of large document collections.
However, for users to use the results of topic models, they must be able
to understand the models’ output. This depends on model visualization,
interaction, and evaluation.

We begin this chapter with a discussion of how best to show indi-
vidual topics to users. From these foundations, we move to how we can
display entire models—with many topics—to users. Finally, we close
with how users can provide feedback through these interfaces to detect
errors and improve the underlying model.

3.1 Displaying Topics

Recall from the previous chapters that topics are distributions over
words; the words with the highest weight in a topic best explain what the
topic is about. While the simplest answer—just show the most probable
words—is a common solution, there are refinements that can improve
a user’s understanding of a collection by showing the relationships

38
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Figure 3.1: Word clouds use a 2D layout to show which words appear in a topic.
Word size is related to its probability in the topic, showing which words are more
prominent.

between words or explicitly showing words’ probability.

Word Lists Just showing a list of the most common words (a visualiza-
tion that we will call “word list”) is very simple, and works well. Users
can quickly understand how words are arranged, and it is an efficient
use of space. Topics have been represented horizontally [Gardner et al.,
2010, Smith et al., 2015] or vertically [Eisenstein et al., 2012, Chaney
and Blei, 2012], with or without commas separating the individual
words, or using set notation [Chaney and Blei, 2012]. Smith et al. [2015]
go further by adding bars representing the probabilities of the word.

Word Clouds Word clouds (e.g., Figure 3.1) are another popular
approach for displaying topics. Unlike word lists, they also use the size
of words to convey additional information. Word clouds typically use
the size of words to reflect the probability of the words. This uses more
of a given visualization area to be used to display a topic.

However, word clouds have been criticized for providing poor support
for visual search [Viégas and Wattenberg, 2008] and lacking contextual
information between words [Harris, 2011]; users can sometimes draw
false connections between words that are placed next to each other
randomly in a word cloud. Another alternative is to use word associations
to set the position of words [Smith et al., 2014]; Figure 3.2 places words
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Figure 3.2: A topic-in-a-box visualization for topics—like a word cloud—shows
words in a 2D context. However, it uses local co-occurence (whether words appear
together in a sentence) to decide which words to place next to each other.

that appear together next to each other in the visualization.

3.2 Labeling Topics

Throughout this survey, we have been referring to topics with labels such
as information technology or the arts. These are convenient descriptors,
but completely removed from the raw distribution over words. Thus, it
is often useful to assign labels to topics within an interface.

In contrast to the previous visualization approaches, labeling focuses
on showing not the original words of a topic but rather a clearer label
more akin to what a human summary of the data would provide.

Approaches for automatic labeling can be divided into those that
only use internal information from the topic model against those that
also use external knowledge resources. While purely internal methods
are more robust and consistent with the philosophy of unsupervised
topic models, external resources often produce higher quality labels.

Of the techniques that use external resources, we further separate
those that use direct supervision for labeling (i.e., knowing what consti-
tutes a good labeling) from those that use general knowledge resources
such as Wikipedia or knowledge bases.

Internal Labeling Mei et al. [2007b] propose an internal labeling
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method that takes prominent phrases from the topic and compares how
consistent the phrase’s context is with the topic distribution. Phrases
whose contexts closely resemble the topic often appear in regions of text
that summarize the document, making them good candidates for labels.
Mao et al. [2012] extend the technique to hierarchies, using the insight
that parents’ labels should be consistent with their children’s.

Labeling with Supervised Labels Lau et al. [2010] use a supervised
approach to rerank the words in a topic to ensure that the user sees the
“best” word in the topic. Each candidate word forms a feature vector
consisting of features such as the following:

• the conditional probability of a word given the other words in a
topic (which implies topic coherence, as discussed in Chapter 3.4);
• whether the word is a hypernym of other words in the topic (e.g.,
“dog” in a topic that also contains “terrier” and “poodle”); and
• the original probability of the word in the topic.

While these can be used alone as an unsupervised reranking, Lau
et al. [2010] use user-selected best topic words to weight which of these
features are most important for selecting the best topic word. These
weights are learned using support vector regression. Lau et al. [2011]
extend their technique by adding candidates from Wikipedia to the set.
The weakness of this approach is that Wikipedia may not have coverage
of the topics in the collection; if Wikipedia ignores the theme captured
by a topic model, then it will fail to find an appropriate label for that
topic.

Labeling with Knowledge Bases Mao et al. [2012] align topic models
with an external ontology of labels. They argue that labels should match
topic words (as labeling with flat topics); a topic’s words should be
consistent with a labels’ children in the hierarchy; and the topic’s labels
should be unique.

Aletras et al. [2014] instead query the whole Web and then build a
graph that includes the words in the titles of the retrieved webpages.
Their goal is to find words that are “central” in the graph: these words
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should make for a good title. Words have edges between them if they
appear close to each other more than one would expect by chance.
This property is measures through the normalized pointwise mutual
information (npmi) metric. They find the central words by using the
PageRank [Page et al., 1999] algorithm, which finds words that are
highly probable in the topic and appear frequently with many other
words in the topic. This is the same algorithm that search engines use
to find pages that have “high authority” on the Internet.

Just like a search engine should return simpsonsarchive.com for
a search on “the Simpsons” because everyone links to it, this labeling
method will find the word in a topic that all of the other words “vote
for”. For each word in a topic, find all of the words that are likely to
also appear with that word and then take the winner of that election
as our label for a topic. For example, given the topic

cell response immune lymphocyte antigen cytokine t-cell
induce receptor immunity

the algorithm selects immune system, as it appears near many of the
other terms in the topic [Aletras et al., 2014].

Using Labeled Documents The task of associating labels with topics
becomes much easier if many of your documents are themselves labeled.
Labeled lda [Ramage et al., 2009] associates topics to each of the
labels and forces labeled documents to only use the topics associated
with the document. This constraint forces the topics to be consistent
with the original labels (Figure 3.3). Bakalov et al. [2012] extend this
to hierarchical label sets (e.g., ny Times subjects that place Russia
under International), while Nguyen et al. [2014] extend it to learning
hierarchies of topics from unorganized labels, learning that ska1 is a
kind of music without provided links.

3.3 Displaying Models

However, topics are not the end of the story. Users often want to use
topics to find relevant documents within the collection. Going back to

1A musical genre, familiar to reggae fans and cruciverbalists.
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Figure 3.3: Example of topics learned by labeled lda (Figure from Ramage et al.
[2009]). Each topic in labeled lda is associated with a label, which encourages
the topics to be consistent with the ontology of labels. lda, in contrast, uses the
empirical frequency of topics to divide the collection, resulting in three topics (8, 13,
19) associated with the labeled lda web topic.

Figure 3.4: The Topic Model Visualization Engine [Chaney and Blei, 2012] shows
the most related documents to a topic along with related topics.
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our example in a previous chapter, a user may want to find the “smoking
gun” in the Enron corpus, not just use topics to understand the main
themes in a collection.

Thus, a good topic model visualization must also show the documents
associated with a topic. The Topic Model Visualization Engine [Chaney
and Blei, 2012, tmve] shows the top documents associated with a topic
(Figure 3.4). Recall that each document has a distribution over topics θd,
which is a vector with an entry for each topic. We focus on the dimension
associated with a particular topic and then sort the documents based
on that topic coordinate from largest to smallest.

The topical guide [Gardner et al., 2010] extends this approach
by enriching topic views with additional metadata. For instance, if
the collection has dollar amounts or sentiment [Pang and Lee, 2008]
associated with a document, it provides a histogram of the metadata
associated with the topic. It also provides in context examples of topic
words, allowing to see how a word is used within a topic (helping to
address the topic model’s bag of words assumptions).

Interactive TOpic Model and MEtadata [Eisenstein et al., 2014,
Interactive TOpic Model and MEtadata] focuses on a specific type of
metadata: time. It allows users to view the evolution of topics over time
to understand, for example, how the issue of slavery is reframed from
an economic argument to an argument over human rights. It supports
filtering to specific topics or to see how words are used over time across
topics.

Rather than showing how topics relate to metadata, Chuang et al.
[2012] focus on how topics relate to each other. Their “Termite” topic
visualization (Figure 3.5) shows the term-by-term similarity between
topics. By presenting topic-term probabilities on a grid with topics as
the columns and terms as the rows, users can see when topics share
words or when topics are only about a handful of words.

3.4 Evaluation, Stability, and Repair

Visualizations can help show users where topic models have issues. Topic
models are rarely perfect, and quality can vary within a model. Even in
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Figure 3.5: The Termite visualization of topics helps reveal which topics use similar
words and are thus likely talking about similar things.

good models we often find several poorly fit or improperly combined
topics.

For many years, the primary metric for evaluating the quality of
a topic model was the held-out likelihood of a model [Wallach et al.,
2009b]. Because a topic model is a generative probabilistic model—like a
language model [Chen et al., 1998]—we can ask how well the model can
predict unseen text: run the generative process forward for the document
and see how well that matches up with the held-out document. If the
model does a good job of using topics to predict what words will appear
in new documents, then it is a good model, and if it fails to do so, it is
a bad model.

In some ways held-out likelihood makes sense, but it is incomplete.
We should be able to detect some kinds of failure: topics that are just
random noise will have poor held-out likelihood. On the other hand,
hundreds topics so specific that any held-out document is modeled well
yields an excellent held-out likelihood. The topics would nevertheless
lack generalizability and interpretability in the eyes of a user.

Chang et al. [2009] show that held-out likelihood, a traditional
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measure of probabilistic model quality, emphasizes complexity rather
than the ease of interpretability that users are looking for. User ratings
of how good topics negatively correlate with held-out likelihood: a more
complex model (e.g., a model with more complicated equations or a
model with more topics) can better fit a random held-out document.
More complex models, however, are more confusing for users.

Automated measurements [Newman et al., 2010, Mimno et al., 2011,
Lau et al., 2014] of topic quality may serve as a proxy for human
interpretability ratings. However, these approaches may not be able
to tell you whether a topic model is suitable for a specific application,
which parts of a model are reliable, or why. Showing the relationships
between multiple models can also help distinguish stable from spurious
topics [Chuang et al., 2015], and adjusting the “hyperparameters” of
distributions (the Dirichlet parameters of models discussed in Chapter 1)
can have a large effect of what the final models are [Wallach et al.,
2009a].

Tang et al. [2014] provide a diagnosis manual for what properties of
a dataset can cause the failure of a topic model: a mismatch between the
number of topics and documents, topics that are “too close together”,
or a mismatch between the number of topics in a document and the
Dirichlet parameter α.

Interactive topic modeling—in conjunction with visualizations—can
help correct the problems of topic models. A user first gets an overview
of the collection using a visualization of the topics and documents and
can then see and correct instances where the model makes mistakes.

For example, Figure 3.6 shows a topic learned from abstracts of
grants funded by the American National Institutes of Health (nih, dis-
cussed more in Chapter 5.1). Most topics were “good”: they summarized
the data and told a story about a coherent slice of research supported
by the nih. However, this topic is more problematic; it combines words
about the central nervous system with words about the urinary system.
Such a topic [Mimno et al., 2011] does not give a clear understanding
of the documents it should represent.

Hu et al. [2014a] address this problem by allowing a user to add
probabilistic constraints to the model [Boyd-Graber et al., 2007, Andrze-
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Topic Words (before)

bladder, sci, spinal_cord,
spinal_cord_injury,
spinal, urinary, uri-
nary_tract, urothe-
lial,injury, motor,
recovery, reflex, cer-
vical, urothelium, func-
tional_recovery

Topic Words (after)
sci, spinal_cord,
spinal_cord_injury,
spinal, injury, recov-
ery, motor, reflex,
urothelial, injured,
functional_recovery,
plasticity, locomotor,
cervical, locomotion

Figure 3.6: Example topics before and after interactive topic modeling from Hu
et al. [2014a]. Initially, the topic conflates two topics (urinary and central nervous
system), which is undesirable. Adding a constraint that the words “bladder” and
“spinal cord” should not appear together in a topic makes the topic more coherent
and discovers concepts that were not present before.

jewski et al., 2009]. For example, the user might say that “bladder” and
“spinal cord” do not belong in the same topic together. Figure 3.6 shows
how the topic is more focused after the user provides this feedback. In
contrast to probabilistic constraints, Choo et al. [2013] and Lund et al.
[2017] use matrix factorization constraints to guide changes to topics,
which can be much faster.

3.5 Summary

While topic models provide users with overviews of corpora, topic mod-
els cannot be much help if the users cannot effectively see or understand
the underlying topics and how they relate to specific documents. Evalu-
ations help to identify which portions of a model to trust and which
to use with caution. Interactive visualizations allow users to discover
and refine insights. In the next chapters we will talk about specific
applications of these insights, but these insights are often built on the
initial understanding of a model offered by the visualizations discussed
in this chapter.



4
Historical Documents

Topic models play an important role in the analysis of historical docu-
ments. Historical records tend to be extensive and difficult to manage
without intense and time-consuming organization. Records are compli-
cated: they resist categorization, and may even lack standard spelling
and formatting. But there is more to history than the management of
documents. The task of a historian is not only to absorb the contents
of historical records, but to generalize; to find patterns and regularities
that are true to the documents, but also beyond any single piece of
evidence. Topic models are useful because they address these issues.
They are scalable, robust to variability, and able to generalize while
remaining grounded in observation.

Automated methods are an especially valuable counterpoint to tra-
ditional scholarly methods. Studying history is about encountering the
unexpected, often in contexts that seem familiar. We do not necessarily
know how people in the past talked about particular issues, or how they
organized their lives. Perhaps more dangerously, we assume that we
know these things, and that our ancestors saw the world in the same
way we do. Topic models give us a perspective that is interpretable but
at the same time alien, based on patterns in documents and not on our
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own conceptions of how things should be.
Time is a critical variable in the study of historical documents.

Although many modern collections have a significant aspect of time
variation (see for example scientometrics), time is a defining element of
historical research. Collections of historical documents are necessarily
situated in a time other than our own, but also tend to cover long
periods—decades or even centuries. As a result, many of the examples
cited in this chapter organize documents along a temporal axis. The
associated analysis is particularly concerned with how language, as
reflected in topic concentrations and topic contents, changes over time.

This chapter is organized around different formats for historical
documents. A recurring focus is the desire to plot events and discourses
against time. We begin with historical newspapers, which are relatively
close to the modern news articles that are a more familiar use case
in topic modeling. We then consider other forms of historical records,
such as annals and diaries. These show the flexibility of topic modeling,
including a corpus not in English and corpus in English with irregular
spelling. Finally, we consider studies of historical scholarly literature.

4.1 Newspapers

Newman and Block [2006] present an example of topic modeling on
historical newspapers,1 in a collection of articles from the Pennsylvania
Gazette from 1728 to 1800.2 These articles comprise 25 million word
tokens in articles and advertisements, and cover several generations
of everyday life before, during, and after the founding of the United
States of America. The authors contrast their study to manually created
keyword-based indexes, which focus on specific terms and can be applied
inconsistently across large corpora. Spurious patterns in index term
use could complicate historical research. They cite an example of the
tag adv, which is used extensively in the early and late decades of the
corpus, but not in the middle. The topic-based approach is attractive

1Mei and Zhai [2005] present an earlier example of contemporary news analysis
(i.e., where the data are already digitized). Their work also uses topic models to
show the evolution of themes over time.

2http://www.accessible-archives.com/
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because it is consistent across the collection (as long as the terms used
in the documents are themselves consistent) and because it is abstract,
reducing the chance that modern historians miss key terms.

They compare three methods for finding semantic dimensions, latent
semantic analysis [Deerwester et al., 1990], k-means clustering, and a
topic model [Hofmann, 1999a]. The difference between these methods
can be described via expressivity. lsa embeds word types and docu-
ments in a low-dimensional space well, but the individual dimensions
of this space are not interpretable as themes. lsa is too expressive: it
places no constraints, such as positivity, on the learned dimensions,
and therefore produces uninterpretable results that nevertheless fit the
document set well. The k-means clustering is more similar to the topic
model, and more successful at finding recognizable themes. But it is
also prone to repeating similar clusters with small variations. Because
of the single-membership assumption (a document can only belong to
one cluster), the clustering model cannot represent documents with
varying combinations of somewhat independent themes. The k-means
model is therefore insufficiently expressive: it forced to “waste” clusters
on frequent combinations of simpler themes. The topic model, in con-
trast, has both modeling flexibility along with constraints to support
interpretable results.

The authors find that the learned topics are a good representation of
dynamics in the corpus, although not always in a direct manner. There
is a large increase in discussions of politics in the period immediately
around the American Revolution (state government constitution law
united power). There is also evidence of economic factors: a topic relating
to descriptions of cloth (silk cotton ditto white black linen) rises in the
1750s, but then declines as Americans turned to domestic “homespun”
cloth production in response to British trade policies. Other topics point
to more subtle changes in language. A topic that is less immediately
interpretable (say thing might think own did) corresponds to a series of
long “public letters” that contain more academic “argument making”.
This is consistent with other results [Viermetz et al., 2008] that suggest
topics may be long-term or transient, which is captured directly by
Viermetz et al. [2008].
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Nelson studies topics in Civil War-era newspapers, including the
Confederate paper of record, the Richmond Daily Dispatch.3 Like Block
and Newman, Nelson’s goal is to organize the collection into themes
and to measure the variation in prevalence of those themes over time.
The web interface highlights a temporal view of the collection as a
series of topic-specific time series. The mode of analysis is neither fully
automated nor manual, but rather combines the two approaches. Nelson
manually labels the topics and groups them into larger categories such
as “slavery”, “nationalism and patriotism”, “soldiers”, and “economy”.

He validates the model by comparing topics to a known and pre-
viously annotated category, the “fugitive slave ads”. These documents
were pre-photographic descriptions of runaway slaves, and have a spe-
cific language consisting of aspects of personal appearance and possible
locations where enslaved people might have hidden. He finds a near
perfect correspondence between the prevalence over time of manually
labeled fugitive slave ads and documents that have a high concentration
of a specific topic, which places high probability on terms such as reward,
years, and color (manual labels were not used in training the model).
Nelson notes that few if any of these documents are assigned completely
to this topic: he uses a cutoff of 21.5% as a criterion.

Nelson’s larger-scale groupings of topics pick out threads of discourse
that may or may not be correlated over time. The model identifies three
topics that have similar temporal distribution, peaking at the beginning
of the war in 1861 and largely disappearing afterwards. These are related
but distinct themes: anti-Northern sentiment expressed in poetic form,
anti-Northern sentiment expressed in vitriolic prose, and discussion of
secession. All three form aspects of the same process, the rhetorical
push for war. Other related topics have slightly different temporal
distributions. Nelson groups six topics related to soldiers, and displays
them in the order of their maximum concentration over time. They
move from “military recruitment” and “orders to report” to later topics
related to “deserters”, “casualties”, and “war prisoners.” Again, these
are related themes but rather than comprising a single event they
trace the development of the increasingly dire military situation of the

3Mining the Dispatch, http://dsl.richmond.edu/dispatch/
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Confederacy.
Yang et al. [2011] model a collection of historical newspapers from

Texas spanning from the end of the Civil War to the present day. The
goal is both exploratory, to find out about the interests of Texans through
the 19th and 20th centuries, and semi-exploratory, to find out more about
the history and context of specific, pre-specified themes such as cotton
production. In the topic model setting, semi-exploratory analysis starts
by identifying one or more topics that seem to correspond to the theme
of interest, and then using those topics as an axis of investigation into
the corpus. For example, a historian considered documents with topics
related to cotton, and the topics that co-occur in those documents. The
study also led to more fully exploratory results. A Battle of San Jacinto
topic, the final conflict in the Texas Revolution that led to separation
from Mexico, appeared earlier than expected. Further investigation
suggested that the significance of the pivotal battle of San Jacinto was
established much earlier than historians had previously anticipated.

The Texas newspaper study raises several interesting methodological
issues relating to pre-processing and iterative modeling. The authors
put considerable work into dealing with the quality of digitization. Many
factors that affect the quality of digitized historical newspapers, from
the quality of the original printing to scanning, article segmentation,
and optical character recognition (ocr). For this study extensive work
was applied to automated spelling correction. Another notable factor in
this study is its prominent use of multiple topic models. There is often
a tacit assumption that a single corpus should result in a single model,
but in practice modeling is often iterative, and intimately bound to the
development of pre-processing systems. AlSumait et al. [2008] iteratively
refine their model with each segment of a news collection, while Yang
et al. [2011] train different models on different temporal slices of the
corpus. Although there is some advantage to maintaining a consistent
topic space over time, dividing the corpus into separate sections has
certain advantages. In this case, historians were interested in specific
historic periods, such as the full run of a newspaper during several pivotal
years, that are smaller than the full corpus but yet too large to be read
easily. The authors also describe an iterative workflow that involves
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comparing topic model output after each of several pre-processing
steps. Topic models are often effective at identifying consistent data-
preparation errors, such as end-of-line hyphenation and consistent ocr
errors.

4.2 Historical Records

Other types of records besides newspapers are of interest, and present
their own challenges. This section considers two case studies, in which
the simplicity of the bag-of-words document model is an asset because
it allows for substantial variability in spelling and language, both in
English and in other languages.

Erlin [2017] search for work related to epistemology in a large corpus
of English and German books. They “seed” the models for each language
with several query words that the authors expect to be related to that
subject. This approach is closer to standard information retrieval than
many other topic model applications, since the model is used both as
a way of organizing the corpus and as a way of focusing attention on
specific aspects. Their use of a topic model differs from standard IR
in that they are more deliberately open to related terms and concepts:
epistemology is expected to be broad, and more likely to be represented
by a combination of words than by any one query.

Miller [2013] uses Chinese records to investigate the meaning of the
word zei, or “bandit” in Qing dynasty China (1644–1912). The word by
itself can imply several different forms of anti-social behavior, which
are difficult to distinguish from word frequencies alone. A topic model
uses contextual information to separate these effects.

The application of topic models in Chinese highlights the importance
of tokenization. We usually receive documents in the form of long strings,
but we are interested in identifying tokens that are short strings with
a specific meaning. Breaking a document into distinct tokens is an
often-overlooked part of the document analysis process. In European
languages we can achieve good results by separating strings of letter
characters from sequences of non-letter characters, although there are
many special cases [Boyd-Graber et al., 2014]. Tokens may contain
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non-letter characters such as apostrophes and hyphens, and may span
multiple words (Queen Victoria, black hole). In many East Asian writing
systems we cannot rely on orthographic conventions to identify tokens.
Miller argues that in Classical Chinese a single character can be treated
as a token without harming modeling, but for Japanese and modern
Chinese we must often rely on pre-processing tools that are themselves
potentially unreliable.

Cameron Blevins models the diary of Martha Ballard (1735–1812), a
revolutionary war-era midwife who recorded entries over 27 years.4 The
model provides a useful way to discover connections between words and
repeated discourses. As with other historical corpora, Blevins focuses
on the connection between topics and time. Specific events, like a birth,
can be highlighted by looking at spikes in a certain topic in the day-
to-day time series. But larger trends are also evident. As a calibration
experiment, Blevins measures the association of a topic that appears to
refer to cold weather (cold, windy, chilly, snowy, air) to months of the
year. As expected, the concentration of this topic is lowest from May to
August, rises from September to January, and falls from February to
April.

Blevins identifies several other topics that appear to change in their
concentration over time. Two topics involving house work focusing
roughly on cleaning and cooking appear to be correlated in time, rising
over the decades. Blevins connects this finding to suggestions that as
Ballard grew older and her children moved away, she had less help
from family members. A more subtle topic involves descriptions of
fatigue and illness. This topic also increases over time, and appears
to correlate with the housework topics, except in the last year of the
diary, where fatigue and illness reach their highest concentration and
housework declines.

This analysis exemplifies the exploratory nature of topic modeling:
by themselves, these observations are not conclusive, but they are
suggestive and point to areas of further analysis. A scholar might take
the diary entries that score high on an individual topic as a reading list,
and determine how well a particular automatically detected discourse

4http://www.cameronblevins.org/posts/topic-modeling-martha-ballards-diary/
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maps to themes in Ballard’s personal experience. For example, one might
check whether Ballard’s references to fatigue and illness are referring to
herself or to patients. The model does not tell the whole story, but it
points to where stories might lie.

Blevins argues that characteristics of the diary form make it well-
suited for topic analysis: “Short, content-driven entries that usually
touch upon a limited number of topics appear to produce remarkably
cohesive and accurate topics.” In addition, the topic model’s lack of
linguistic sophistication is an asset. The diary is written in a terse
style with many abbreviations and with irregular, 18th century spelling:
“mrss Pages illness Came on at Evng and Shee was Deliverd at 11h of a
Son which waid 12 lb.” Models trained on modern text corpora might
not even recognize this example as English, but the topic modeling
algorithm is still capable of finding semantically meaningful groups of
words.

4.3 Scholarly Literature

The historical record of scholarship is a valuable source for intellectual
history. Many users make use of the jstor “Data for Research” api.5
The dfr api is an important example, because it provides access to
articles that have been scanned by jstor and may be under copyright.
Access to the underlying documents in their original form as readable
sequences of words may be restricted for legal or commercial reasons.
dfr provides a simple view into selected articles by only providing
the frequency of word unigrams. While the bag-of-words assumption
used by topic models is restrictive, in this case it can be an advantage,
because the original sequence of words is not used for inference anyway.

Mimno [2012] studies a collection of Classics journals digitized by
jstor to detect changes in the field over the 20th century. A distinctive
aspect of this study is the use of a polylingual topic model [Mimno
et al., 2009]. The details of this model and how it contrasts with other
models are described in more detail in Chapter 8.1; for this discussion
we need some topic model that can discover topics that are consistent

5http://dfr.jstor.org/
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across languages. An English-language journal is compared to a German-
language journal by learning a common set of topics that each have a
vocabulary in both languages. In other words, a topic has two “modes”,
one in which it emits words drawn from a distribution over English
terms, and another in which it emits words drawn from a distribution
over German terms. The linkage between English and German words
is constructed using Wikipedia articles. Wikipedia articles exist in
many different languages, and articles in one language often link to
comparable articles in another language. The author first selects English
Wikipedia articles matching key terms in the English-language journals,
and then collects the German Wikipedia articles that are listed as being
comparable to the selected English-language articles.

By training the topic model jointly on the combined corpus of
the original journal articles and the comparable Wikipedia articles,
the model provides insight into the relative concentration of scholarly
interests across the two language communities. The German-language
journal articles contain more work on law and oratory, themes that are
present in the English-language articles but less prevalent. The model
also shows a large increase in interest in poetry in the German journal
in the period following the second world war. In the English journals
there is a large increase starting in the 1980s in cultural and economic
studies along with critical theory, which does not appear in the German
journals.

Riddell [2012] also approaches German scholarly literature from
the 20th century. He finds that topics align well with authors such as
Goethe and subjects such as folklore. Apparent spikes in the use of these
topics appear to align with anniversaries of authors (Göthe, the Grimm
brothers). Riddell emphasizes that models are useful in raising issues
but not a substitute for scholarship. He comments that “it becomes
essential that those using topic models validate the description provided
by a topic model by reference to something other than the topic model
itself.”

Goldstone and Underwood [2014] use a topic model as a tool to
structure an exploration of a corpus that spans more than a century.
They are interested both in changes at the topic level and at the level of
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word use within topics. For these authors the appeal of topic modeling
is that models are better able to represent contextual meaning than
simple lists of keywords. They write that “[t]he meanings of words are
shifting and context-dependent. For this reason, it is risky to construct
groups of words that we imagine are equivalent to some predetermined
concept.”

They analyze the proceedings of the Modern Language Association6
to find shifts in focus in English literature. A model trained with 150
topics on 21,000 articles identifies a topic associated with descriptions of
violence: power, violence, fear, blood, death, murder, act, guilt. Using a
temporal plot they argue that the concentration of this topic is greater
in the second half of the 20th century than during the first half. They
contextualize this finding by comparing the frequency of these words
in a more general corpus from Google n-grams; there is no comparable
change. This approach holds the topic fixed and searches for associated
words. They then pivot and hold the word “power” fixed and search for
associated topics. In this case the violence topic appears to be relatively
stable in its association with the target word. The largest increase is
in a different topic characterized by the words own power text form,
in which context it appears almost exclusively after 1980. Like many
topics, the content of this topic is difficult to assess from top words
alone. Further exploration through exploration of individual documents
would be necessary (e.g., through the tools discussed in Chapter 3).

4.4 Summary

This chapter focuses on finding themes in document that reflect temporal
trends. When we consider newspapers, historical records, and historical
scholarly journals we are looking not just for the topical foci of each
time period, but how those topics shift in concentration as they are
influenced by historical events. Modeling large collections of documents
allows us to reveal how events are reflected in writing and how ideas
and emotions emerge in response to changing events.

In the next chapter, we extend our discussion of scholarly journals

6The MLA is a professional organization for literary scholars in the United States.
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to focus more directly on how new ideas emerge. Unlike newspapers and
diaries which reflect the reality of the world, the writing in scientific
manuscripts can actually change the world by introducing innovative
technologies. The next chapter asks whether we can detect and describe
these innovations.



5
Understanding Scientific Publications

In Chapter 4, we discuss how scholars use topic models to understand
non-fiction documents. This chapter focuses on a particular sub-genre of
non-fiction: scientific documents. Scientific documents deserve their own
chapter because these documents use very specialized vocabulary, they
are the vehicles for innovation, and shape important policy decisions.
We discuss each of these aspects in turn.

Specialized Vocabularies Define Fields of Study First, scientific doc-
uments are unique because unlike general documents, their vocabulary
is precise and carefully measured. “Resistance”, “splice”, “utilization”,
and “demand” are common words with radically different meanings
when used in specialized, technical contexts. Their use is a marker for
membership in a specific discipline (Figure 5.1). Thus, the ability of
topic models to capture patterns of word usage also captures community
and affiliation; this goes well beyond the thematic organization of topic
models described in previous chapters.

Scientific Documents Innovate Not every scientific publication is in-
novative; in fact, most are not. However, some scientific publications are

59
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Figure 5.1: Using the appropriate language is a prerequisite for being part of a field
(but not sufficient). Topic models use this to automatically discover fields of study.

Earth-shaking. Such developments might be theoretical, methodological,
or empirical. Physics was revolutionized by relativity. Genetics was
revolutionized by the discovery of polymerase chain reaction methods.
Geology was revolutionized by the discovery of evidence for plate tec-
tonics in the form of magnetic traces in the ocean floor. Unlike the other
domains we have discussed, scientific documents are not just reports of
news or events; they are the news.

What makes the analysis of scientific document collections both
challenging and interesting is that innovation is hard to detect and
hard to attribute. Einstein’s groundbreaking 1905 papers were not fully
recognized until many years later; important ideas are often proposed by
an obscure researcher but only accepted once popularized and supported
by other research. Which document (or researcher) in this case was
the true source of the innovation? As we will see in this chapter, topic
models can help answer this question.

Science and Policy Understanding scientific publications is important
for funding agencies, lawmakers, and the public. Government funding
of science can create jobs, improve culture, and is an important form of
international “soft power”. However, knowing which research to fund is
difficult, as the nature of science means that fields constantly change,
which precludes rigid classifications [Szostak, 2004]. One challenge of
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modeling scientific documents is modeling how fields change; the static
models we have discussed thus far are not always appropriate.

5.1 Understanding Fields of Study

One of the first uses of topic models was to understand the “fields of
science”. Griffiths and Steyvers [2004] found that they were able to
reconstruct the official Proceedings of the National Academy of Sciences
(pnas) topic codes automatically using topic models (Figure 5.2). This
is a useful sanity check: yes, topic models correlate with what we often
think of as scientific disciplines. They use distinct language for methods,
subjects of study, and have different key players.

This work sought to find divisions between the fields of science,
but from a retrospective point of view. In contrast, Talley et al. [2011]
sought to map the funding priorities of the American National Institutes
of Health (nih) from within the organization.

The National Institutes of Health are America’s premiere funding
agency for biological and health research. The nih consists of several
institutes that focus on particular diseases, research techniques, or body
systems; each of these institutes manages its own independent funding
portfolio, sometimes making it difficult to understand the “big picture”
of funding.

Talley et al. [2011] use topic models to help create this big picture,
in contrast to more labor-intensive techniques (e.g., keywords from a
meticulously organized ontology). Their analysis discovered unexpected
overlaps in research priorities across institutes. For example, many in-
stitutes study angiogenesis, the formation of new blood vessels; as a
treatment for cancer, in heart imaging, the molecular basis of angio-
genesis in the eye, and how angiogenesis might signal complications in
diabetes.

In practice, applying topic modeling to the NIH grant abstracts
collection was not straightforward. Creating models that were acceptable
to users accustomed to manually applied keywords required extensive
curation of the vocabulary. Topic models try to find topics to explain
all aspects of a training corpus. A collection of research proposals will
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that might be less obvious in analyses that consider only the
frequencies of single words.

To find topics that consistently rose or fell in popularity from
1991 to 2001, we conducted a linear trend analysis on !j by year,
using the same single sample as in our previous analyses. We
applied this analysis to the sample used to generate Fig. 4.
Consistent with the idea that science shows strong trends, with

topics rising and falling regularly in popularity, 54 of the topics
showed a statistically significant increasing linear trend, and 50
showed a statistically significant decreasing linear trend, both at
the P ! 0.0001 level. The three hottest and coldest topics,
assessed by the size of the linear trend test statistic, are shown
in Fig. 5. The hottest topics discovered through this analysis were
topics 2, 134, and 179, corresponding to global warming and

Fig. 4. (Upper) Mean values of ! at each of the diagnostic topics for all 33 PNAS minor categories, computed by using all abstracts published in 2001. Higher
probabilities are indicated with darker cells. (Lower) The five most probable words in the topics themselves listed in the same order as on the horizontal axis in
Upper.

Griffiths and Steyvers PNAS ! April 6, 2004 ! vol. 101 ! suppl. 1 ! 5233

Figure 5.2: After running a topic model on pnas, Griffiths and Steyvers [2004]
found topics (x-axis) that could recreate the manually defined fields of study covered
by pnas (y-axis).
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have significant discourse related to non-research themes, represented by
words such as “propose,” “support,” and “funding”. Large numbers of
corpus-specific stopwords were identified for removal, mainly associated
with the non-research topics. In addition, Talley et al. [2011] found that
preprocessing documents to combine an extensive list of multi-word
terms into single tokens made a substantial difference. Scientific and
other technical vocabulary often forms non-compositional compound
terms because of the need for specificity. As an example, “amino acid”
contains the word “acid”, but amino acids have no functional similarity
to “fatty acid” or “hydrochloric acid”. Combining such terms into single-
token compounds resulted in substantially improved specificity and
comprehensibility in topics.

5.2 How Fields Change

One way that science is distinct from the fields discussed in the previous
chapters in that scientists see themselves as building a single coherent
structure of knowledge. Each paper in its own way stands on the
shoulders of giants. Topic models for science thus need to be aware
of the connections between documents across time. Another way that
science is different is that the documents themselves introduce new
ideas (we discuss detecting these innovative ideas in the next section).

One of the first techniques to model topic change viewed topics
as subtly changing each year with a dynamic topic model [Blei and
Lafferty, 2006, dtm]. Each topic has a distinct distribution over words
for each time period. For example, the probability that the physics topic
emits the word “string” in 1910 might be low, but after 1970 much
higher. Of course, we do not want the topics to be completely different
every year—we want topics to change, but not too much.

The dtm views topics as changing through Brownian motion: the
topic at year t is drawn from a Gaussian distribution with mean at
the topic for year t − 1 (a separate variance parameter controls how
much topics can vary each year). At this point, you may object given
our discussion of distributions from Chapter 1.3.1: Gaussians produce
continuous observations that might be negative or greater than 1.0,
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while topics are multinomial distributions over discrete outcomes.
To move from Gaussian draws from ~x ∈ Rd to a discrete distributions

over d outcomes, Blei and Lafferty [2006] use the logistic normal form
to create a multinomial distribution

p(z = k | ~x) = expxk∑
i expxi

, (5.1)

rather than drawing the discrete distribution from a Dirichlet distribu-
tion (c.f. Equation 1.3). This greatly complicates inference, but allows
the topics to change gradually from year to year.

With this model, the dtm discovers how fields change over time.
At the start of the twentieth century, the language of physics focused
on understanding how the “æther” propagates waves and the funda-
mental forces; by midcentury, understanding “quantum” effects took
precedence; by the end of the century, experimental physics with large
particle accelerators lead the search for ever more exotic members of
the subatomic menagerie. While the final topic is nearly unrecognizable
given the first, they all are clearly physics; the modeling assumptions
of the dtm capture these nearly imperceptible changes in each year.

The flipping of a calendar page does not rule science, however;
changes can happen at any time. Wang et al. [2008] captures changes in
topics in continuous time; each document gets its “own” view of a topic
that can change slightly from the previous version of a topic. This can
help capture sudden changes in scientific topics, e.g., from an innovative
contribution.

An alternative view of innovation is one directed by authors. Steyvers
et al. [2004], Rosen-Zvi et al. [2004] build a generative model that
includes the identity of authors. An author has a collection of topics
that they write about and each document is a combination of the
topics that its set of authors care about. Zhou et al. [2006] extend
this argument through modeling the use of a topic based on a Markov
transition from other topics. They then use this model to discover the
authors that drive those transitions.
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5.3 Innovation

The changes to fields happen because of innovation. Scientists develop
new techniques, new terminologies, and new understanding of the world.
These concepts require new words which are reflected in their scientific
publications. Unlike other fields, where documents merely report the
changing world, scientific documents are themselves the force that can
change the world: from Darwin’s Origin of Species to Einstein’s papers
on relativity.

Can we find where this change is happening? From a modeling
perspective, we thus need models that can also change. Unlike the
approach described in Chapter 4.3, which focused on static topics, here
we focus on dynamic topics that can change and who is responsible for
the change.

From a historical perspective, we might want to know who introduced
groundbreaking research first. Measuring the context of innovations
may also be useful for policy makers [Largent and Lane, 2012]. Rather
than awaiting “magic” or serendipitous findings, we might want to
measure how conditions, teams, and forms of research collaboration
lead to breakthroughs. Better predictive models could then help direct
new initiatives to recreate the settings that lead to important findings.

From a topic perspective, assessing impact amounts to detecting
who was responsible for changing topics. Mann et al. [2006] find highly
cited papers within the context of individual topics. This approach
helps to contextualize impact relative to sub-domains: a massively
influential paper in mathematics may have the same number of citations
as a moderately successful paper in molecular biology simply because
the latter field is much larger. They also search for papers that have
topically diverse impact by measuring the topic entropy of papers
that cite a given paper. These broadly impactful papers tend to be
methods and tools. From an institutional perspective, Ramage et al.
[2010b] take a post hoc perspective: after fitting a standard lda topic
model, find the distribution over research topics in the entire research
community at time t and find the places in the past whose research
most resembles the present. They hypothesize that these institutions
“lead” other institutions to adopt their ideas.
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Citations are a useful but incomplete guide to solving this problem.
Dietz et al. [2007] develop a “copycat” model that uses the citation
network to model the use of language across cited documents: if you cite
a paper, you are likely to reuse some of the language in the original paper.
He et al. [2009] extend this idea to more complex graphs. However, this
assumes a perfect citation graph, which isn’t always available for some
fields.

Capturing more nuanced effects at either the individual or lab level
requires refining the model. Gerrish and Blei [2010] adapt the random
walk model of Wang et al. [2008] (Chapter 5.2) for scientific change.
Instead of topic randomly wandering into new concepts, Gerrish and
Blei [2010] propose that innovative articles “nudge” topics to look adopt
the word usage of those innovative documents. This model is called
the “dynamic influence model” (dim). The assumption is that concepts
and ideas are represented by language. If we can identify changes in
word usage, this change implies that there were underlying changes in
concepts.

For example, the Penn Treebank [Marcus et al., 1993] revolutionized
natural language process and helped enable the statistical revolution in
computational linguistics. Among its many effects is that people started
using the word “treebank” much more than they had in the past. dim
captures this by explicitly modeling the influence lk,d of a document d
in topic k.

Documents that do not make a splash have no measurable influence,
while influential documents are absorbed by other scientists, who adopt
the influential ideas and, critically, their language. Most documents will
not move topics at all so it is reasonable to assume that ld,k is zero for
most documents. However, influential documents will change a topic.

A topic is changed by an influential document by making the topic’s
distribution over words look more like the words in the influential
document. For example, the article introducing the Penn Treebank uses
“treebank” much more than “potato”, so the topic will have a higher
probability for “treebank” after incorporating a document’s influence.

This incorporation happens similar to the drift of the dynamic topic
model (dtm, Chapter 5.2). Instead of drifting randomly, the direction
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of topic change is based on the words used in influential documents and
the magnitude of the drift is how influential a document is.

Each of these terms are random variables; inference in the model
discovers the settings of the random variables that best explain the
data. The dim’s estimates of influence correlate well with the number
of citations an article gets (the traditional measure of influence). Unlike
citations, however, the dim can be used in more informal settings to
detect influential documents: for example, when a blog or a letter
introduces influential ideas.

5.4 Summary

Understanding science communication allows us to see how our under-
standing of nature, technology, and engineering have advanced over
the years. Ostensibly, topic models can capture how these fields have
changed and have gained additional knowledge with each new discovery.
As the scientific enterprise becomes more distributed and faster moving,
these tools are important for scientists hoping to understand trends and
development and for policy makers who seek to guide innovation.

In contrast to scientific trends, the next chapter looks at less literal
word usage. Unlike science, fiction and literature use words and phrasing
to reveal emotion and mood. However, just like with science, researchers
can use topic models to reveal patterns of how words are used that
reflect artistic and literary trends.



6
Fiction and Literature

This chapter considers documents that are valued not just for their
information content but for their artistic expression. There are many
ways to read fiction, poetry, and rhetoric. How we choose to read affects
the conclusions we are able to make. Scholars have traditionally focused
on a “close reading” approach, in which the goal is to identify the
specific features of a passage that convey a more general meaning, or
emotion, or atmosphere. These features might include nuances of word
selection, echoes of sound through rhyme or alliteration, or prosodic
features like rhythm or cadence.

6.1 Topic Models in the Humanities

While close reading is a foundational tool in the study of literature, it
is necessarily limited by its scale. We value literature because it is one
of the best ways to capture the spirit of an age, and the experiences of
those who lived through it. But standard close reading methods require
narrow focus and thorough interpretation. Topic models complement
close reading in two ways, as a survey method and as a means for
tracing and comparing large-scale patterns.

68
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The survey method is relatively simple, linking passages that a
reader may not have known about. Close reading is the best way to
analyze a short passage of text, but which short passages of text do
we want to analyze? Because no one can read—much less close read—
all the available material from a culture or time period, scholars are
often left trying to make large-scale arguments about the history of
literature from small-scale evidence. And this small-scale exploration is
not randomly selected: the same small canon is studied in detail while
the vast proportion remains the “great unread” [Moretti, 2000]: works
that are never studied. Identifying broad themes and then mapping
those themes to their realization in different contexts may reveal works
or sections of works that are “hiding in plain sight”, unknown to modern
scholarship through obscurity.

An alternative, and less traditional, mode of analysis is often called
“distant reading” [Moretti, 2013a]. This approach uses computer-assisted
methodologies. Topic modeling has emerged as a central tool in distant
reading, as a way to organize our reading of large scale patterns [Blei,
2012].

Topic analysis, viewed as a way of identifying repetitions of language
or discourse through multiple works, resonates with many more familiar
approaches to the study of literature. At the broadest scale, to define a
genre or a literary period is to separate a corpus into sections based on
some observable criterion. We posit a “gothic” literature characterized
by atmospheric descriptions of castles, or a “cyberpunk” literature
characterized by conflicted relationships with information technology.
At a smaller scale, themes or tropes reappear in different contexts. At
the most detailed level, scholars identify repeated phrases, such as the
descriptive epithets used in Homeric oral poetry.

Statistical topic analysis has a similar goal, but pursues it through
different means. Rather than rigid boundaries specified by date of pub-
lication or nationality, algorithms identify genre through the repeated
words that form the traces of those themes. Topics do not represent
themes themselves, but rather identify the implicit statistical regulari-
ties in word use brought about by the presence of genres, themes, and
discourses.
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Applying topic models to fiction, however, brings new challenges.
Jockers [2013] trains a 500-topic model on a corpus of 4000 English-
language novels. Several issues emerge from this corpus. These are
present in other contexts, but they are much more readily apparent in
fiction.

6.2 What is a Document?

In most literature about topic models, the term “document” is used on
the implicit assumption that users have things called documents. In the
canonical lda journal article [Blei et al., 2003], this word is used 143
times, but never defined. The meaning of a “document” is often fairly
clear: a news article, or a scientific abstract. What was not clear in this
earlier work was that this definition can be problematic, especially for
documents longer than a few pages of text.

Treating novels as a single bag of words, for example, does not work.
Topics resulting from this corpus treatment are overly vague and lack
thematic coherence. We should not be surprised by this finding. The
assumption of a topic model is that the concentration of topics over a
document is fixed and unchanging from the beginning of a document to
the end. Natural writing rarely fits the topic model assumption, and a
novel that had no thematic variation over its entire length is unlikely
to have been published.

We need to find a good segmentation into shorter contexts (in
contrast to social media, which often needs to be combined into longer
documents, c.f. Chapter 7.5.1). We assume that themes are expressed in
different sections of a long document like a novel. If a segmentation does
a good job of identifying the boundaries between these sections, each
resulting segment should have relatively few themes. If a segmentation
does not do a good job of identifying boundaries, we should see segments
that contain more themes on average, because our segments combine
fragments of multiple thematic segments.

Jockers [2013] chooses to avoid relying on structural markers such as
chapter divisions and divides novels into 1000-word chunks. This treat-
ment results in coherent, tightly focused topics that can be reasonably
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used as proxies for recognizable themes.
Although fixed-length segmentation is effective, it is not necessarily

ideal. Algee-Hewitt et al. [2015] compare varying fixed-length segmenta-
tions to segmentation based on paragraphs. They evaluate the difference
between treatments by measuring the concentration of topics in each
segment of text after modeling. The Herfindahl index is a measure of
concentration in discrete probability distributions, calculated as the
sum of the squared probabilities of each possible value:

Herfindahl(P ) =
∑
x

P (x)2. (6.1)

For example, consider two distributions P and Q over a set of symbols
{a, b, c, d, e}. If P has non-zero probability only on a single symbol
P (a) = 1.0 and zero probability for all other symbols, the Herfindahl
index of P will be 1.0. If Q has uniform probability on all five symbols
Q(a) = Q(b) = ... = Q(e) = 0.2, the Herfindahl index will be 5 · 1

5 ·
1
5 =

0.2.
When a corpus of 19th-century novels is divided by paragraphs, the

Herfindahl index over concentration of topics within each segment is
consistently larger than the same index calculated when the same corpus
is divided into evenly sized 200-word slices, implying that the distribu-
tion over topics for each segment is more focused on a smaller number
of topics. Setting the slice size to the average length of paragraphs in
the corpus, eighty-two words, increases the Herfindahl concentration
metric, but the resulting value is still smaller than the value based on
paragraphs. This result is reassuring, in that it suggests that paragraphs
do indeed have some consistent meaning, at least in this collection of
19th-century novels.

6.3 People and Places

Because most works of fiction are set in imaginary worlds that do not
exist outside the work itself, they have words such as character names
that are extremely frequent locally but never occur elsewhere. This
word co-occurrence pattern is problematic for topic models because
they can be thought of as machines for finding groups of words that
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occur frequently together and not in other contexts. Character names
are—by that criterion—a perfect topic. Modeling these documents can
result in topics that are essentially lists of character names.

As an example, consider a model with fifty topics of fourteen novels
by Charles Dickens and its top words from a selection of topics (Table
6.1). Upper-case letters are not reduced to lower-case to emphasize the
presence of proper names. Several topics are dominated by capitalized
names, with individual novels clearly identifiable: Topic 4 is Oliver
Twist, Topic 5 is Nicholas Nickleby, Topic 6 is The Pickwick Papers and
Topic 7 is A Tale of Two Cities. In fact, exactly half of the distinct
words in the top 20 words for all topics are capitalized, and almost all
of these are proper names.

Focusing on characters is not always uninformative, and can in some
cases highlight structure within works. Topics 1–3 all refer primarily
to Bleak House (with the exception of Scrooge), but focus on different
interlocking subplots. The first focuses on Lady Dedlock, the second on
Mr. Jarndyce and his two wards, Richard and Ada, and the third on
the investigations of the detective Mr. Bucket. The plot centers around
the revelation of the connections between these apparently unrelated
groups.

Jockers [2013] approaches this problem by constructing a stopword
list that removes all character names before modeling. There are many
ways to construct such lists. Lists of common names are a good start,
but may not be aligned with a specific corpus. Some languages mark
proper names with orthographic conventions like capitalization, but
these tend to be noisy. A useful heuristic in English is to identify terms
that appear capitalized in more than 90% of instances. Even then, names
that are also common words, such as daisy and the aforementioned Mr.
Bucket, or words that appear capitalized for other reasons, such as god,
may lead to unintended results. Furthermore, some languages do not
differentiate letter cases (Hebrew, Korean) and others use it for other
purposes (all nouns in German). Named-entity recognition tools scan
text for patterns of language that indicate personal names, and may
result in greater precision than simpler methods. Nevertheless, there is
no known way to avoid careful consideration of the meaning of words
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Table 6.1: Sample topics from Charles Dickens novels, without removal of character
names (ordered manually).

Topic Terms
1 Lady Leicester Scrooge Dedlock Rouncewell ladyship Wold

Chesney Ghost Volumnia Christmas Tulkinghorn family
Spirit Baronet nephew Rosa Scrooge’s housekeeper Lady’s

2 Richard Jarndyce guardian Ada Charley Caddy dear Skim-
pole Miss Summerson Esther Jellyby miss Vholes Kenge
Woodcourt quite myself Guppy Chancery

3 says George Bucket Snagsby Guppy returns Smallweed Bag-
net comes Tulkinghorn looks takes trooper does makes friend
goes asks cries Chadband

4 Oliver replied Bumble Sikes Jew Fagin boy girl Rose Brown-
low dear gentleman Monks Noah doctor Giles Dodger lady
Nancy Bill

5 Nicholas Nickleby Ralph Kate Newman replied Tim Mulberry
Mantalini Creevy brother N oggs Madame Gride Linkinwater
Smike Arthur rejoined Wititterly Ned

6 Pickwick Winkle replied Tupman Wardle gentleman Snod-
grass Pickwick’s Perker fat boy Bardell dear Jingle inquired
Fogg Dodson friends friend lady

7 Lorry Defarge Doctor Manette Pross Carton Darnay Madame
Lucie Monseigneur Cruncher Jerry Stryver prisoner Charles
Monsieur Tellson’s Marquis father Paris

8 coach uncle gentleman lady box coachman gentlemen land-
lord get London guard inside horses waiter boys mail passen-
gers large better hat

9 street door streets windows houses room window few iron
walls wall rooms dark within shop doors corner small stood
large

10 money letter paper business read pounds papers five hundred
office thousand clerk paid years pen next law desk letters
week
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in context.
Novels describe people and places, but they are also created by peo-

ple (authors) who are influenced by their cultural setting. Jockers and
Mimno [2013] perform a post-hoc analysis on Jockers’ earlier 500-topic
model to determine whether there is a connection between the use of
specific topics and metadata variables such as author gender, author
nationality, and year of publication. They find that the concentration of
many topics is strongly correlated with author gender, and that these
correlations are statistically significant. Such significance testing can
be carried out by randomization and bootstrap tests. Both methods
create “fake” corpora that are similar to the real corpus but different in
specific ways. Randomization or permutation tests randomly shuffle the
assignment of labels (such as author gender). If an observed correlation
between a topic and an external variable is within the range of the
correlations generated by randomly assigning documents to labels, there
is little statistical evidence that that observed correlation is meaning-
ful. Bootstrap tests preserve the relationship between documents and
metadata variables, but resample documents with replacement. This
test indicates whether a result depends on the presence or absence
of a specific document. If there is wide variation between randomly
generated corpora, the observed correlation may be the result of unusual
outliers rather than a consistent pattern.

While the use of statistical hypothesis testing methods is valuable
in the context of large-scale distant reading, a literary analysis is not—
and should not be—like a clinical trial, there are differences between
their use in a scholarly context and their use in more typical scientific
studies. First, the presence of unusual outliers or singular examples can
in fact be a positive result. The suggestion that a particularly work
may be radically different from supposedly similar examples could be
the beginning of a new perspective. At the very least, it can identify
editing and curation issues. Second, a critical variable in an analysis
of statistical significance is sample size. Unlike a designed experiment,
this sample size is usually not within our control: we have the literature
that we have. Finally, it is vitally important to avoid the impulse to
treat a significance score as a binary valid/invalid result. If numeric
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scores should be used at all, they should be presented as a “level of
support” given the documents that are available. Humanists may also be
fundamentally more comfortable with dubious hypotheses: an observed
association with a 10% chance of being purely random could still be a
very strong result.

As an example, Jockers and Mimno [2013] evaluate an in-
triguing hypothesis, that a topic about religious foundations
(Convents and Abbeys) is used more by unknown authors1 than by
either (known) male or female authors. The conjecture is authors were
choosing to remain anonymous to write about politically and religiously
touchy subjects. This correlation, however, showed large variability
under a bootstrap test, and indeed one of the supposedly anonymous
works turned out to be an abridgment of an Anne Radcliffe novel. The
pattern is still present without the effect of these works, but there is
not a clear and undeniable association between anonymity and the
questioning of religious authority.

Fiction is sometimes set in the context of real places. Tangherlini
and Leonard [2013] look at nested models of sub-corpora within Danish
literature in a way that highlights connections between real-world events
and cultural movements and fictional echoes. Their method, which they
describe as a topical “trawl line,” uses a user-specified sub-corpus as
a query and then searches the remainder of the corpus for works that
match to that query. As examples, they find works influenced by the
translation of Charles Darwin into Danish, works influenced by the
“Modern Breakthrough”, and works influenced by folklore and regional
literature.

6.4 Beyond the Literal

One of the hallmarks of fiction and literature is the use of figurative
language. It is not obvious that unintelligent machines with no cultural
understanding would have any ability to process such metaphors. How-
ever, Rhody [2012] demonstrates on a corpus of poetry that although

1Authors unknown to modern scholarship, not authors publishing under known
pseudonyms.
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topics do not represent symbolic meanings, they are a good way of
detecting the concrete language associated with repeated metaphors.

Specifically, Rhody explores a corpus of 4500 poems that describe
works of art (or ekphrastic poems). She trains a sixty-topic model, and
highlights several particularly interesting topics. One of these topics
places high probability on night, light, moon, stars, day, dark, sun, sleep,
sky, wind, time, eyes, star, darkness, bright. The apparent meaning of
the topic is clear, and well summarized by the single top word: night.
But Rhody finds that when she explores the context of this topic, the
poems are all using a consistent metaphor relating night and sleep to
death. The concept of death does not appear in the top words—poets are
not addressing the issue directly. Nevertheless, the model has identified
an example of non-literal, figurative language even though, because it
is grounded in the actual words, it has no ability to represent poets’
deeper meaning. This is because the poets use a consistent “surface”
language to represent a consistent metaphor. The metaphor is not
detectable directly, but a poet’s use of a metaphor has a signature that
is observable.

Rhody highlights a second topic that provides an example of a
different type of non-literal meaning. This topic places high probability
on death, life, heart, dead, long, world, blood, earth, man, soul, men, face,
day, pain, die. Unlike the previous topic, the topic directly references
death and life, but it also lacks what Rhody calls the “unambiguous
comprehensibility” of the night topic. But examining the context of
poems that contain the topic reveals a different pattern. These poems
have a consistent form that Rhody describes as elegiac. She writes that
“Paul Laurence Dunbar’s ‘We Wear the Mask’ never once mentions the
word ‘death’, the discourse Dunbar draws from to describe the erasure
of identity and the shackles of racial injustice are identified by the
model as drawing heavily from language associated with death, loss,
and internal turmoil—language which ‘The Starry Night’ indisputably
also draws from”.
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6.5 Comparison to Stylometric Analysis

In addition to discussing what researchers have done in literary analysis
with topic models, it is useful to consider how other technologies have
been used in the same setting. One of the most established applications of
computation in the study of literature is stylometry, or more specifically
the question of authorship attribution [Juola, 2006]. It is illustrative
to contrast the goals and methods of stylometry with those of topic
modeling.

The critical insight of modern stylometry is that it is easy for authors
to shift the focus of their work, but much more difficult to alter the
semi-conscious style of their language [Mosteller and Wallace, 1964]. The
implication is that content-bearing words, such as nouns and adjectives,
are a relatively poor indicator of authorship or at least authorial style,
while functional words, such as determiners, conjunctions, and preposi-
tions, carry more information about authorship. Therefore, measures
such as Burrows’ delta [Burrows, 2002] restrict attention to the most
frequent words in a corpus.

The contrast to topic modeling is clear: stylometric analysis focuses
on frequent, low-information words and ignores content-bearing words,
while topic modeling generally does the exact opposite. We generally
remove high frequency words using a stop list, and in fiction go even
further in removing words that are overly distinctive of a particular
work. An assumption of topic modeling is therefore that the goal is
to find thematic components that are not specific to one author, but
rather repeat, with more or less variation, across multiple works. Where
stylometry seeks to see past what authors are saying and focus on how
they are saying it, a use of topic modeling is to find instances where
different authors are writing about the same thing.

6.6 Operationalizing “Theme”

The use of topic modeling in the study of literature has been beneficial
both for humanities scholars and for machine learning researchers. For
scholars, these models offer the possibility of a more precise approach to
concepts that have traditionally been vague and impressionistic, such as
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theme, genre, and motif. At the same time, and somewhat paradoxically,
literary documents present such a radically different mode of language
than news articles or scientific publications that they lead us to question
the apparent precision of statistical approaches.

Topic models provide a way of operationalizing the concept of
distant reading. Moretti [2013b] defines this term as “Taking a concept,
and transforming it into a series of operations”. He attributes this
definition to Bridgman [1927], who introduces the term in the context
of measurement in physics: “To find the length of an object, we have to
perform certain physical operations. The concept of length is therefore
fixed when the operations by which length is measured are fixed: that
is, the concept of length involves as much as and nothing more than the
set of operations by which length is determined”. While topic models
are an imperfect tool for measuring theme in literature, they do provide
a much more powerful approximation of theme than anything that we
have had previously.

But applying statistical models to literature also brings forward a
series of challenges that highlight the amount of human interpretive
work that must go into successful topic modeling. Literary documents
are of varied lengths, describe self-contained imaginary worlds, and are
suffused with symbolic language. We can address these issues through
corpus curation and through interpretive reading of models, but in
doing so we must necessarily confront the fact that we are not applying
Bridgman’s fixed set of operations.

6.7 Summary

Topic models cannot by themselves study literature, but they are useful
tools for scholars studying literature. Models provide a distinct perspec-
tive that can call our attention to connections across different parts of a
corpus that might not be obvious from close reading. Literary concepts
are complicated, but they often have surprisingly strong statistical
signatures. Models can still be useful in identifying areas of potential
interest, even if they don’t “understand” what they are finding. At the
same time, fiction presents a challenge to modeling practices because
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each fictional work deliberately creates its own closed world—a world
whose characters and settings are so vivid that they can overshadow
more subtle connections across works. Addressing these challenges can
serve as an invitation to think deeply about words and their contextual
meanings.

Just as topic models provide a methodology for analyzing the cre-
ative, diverse œuvre of authors and the emotions and thoughts of
fictional characters, topic models can also help us build insights of real
people. Thanks to social media, we have a wealth of information about
people sharing their thoughts and views online. Topic models can help
us use these data to better capture emotion, beliefs, and relationships.
The next chapter discusses how topic models can understand these
messy, interesting properties of text.



7
Computational Social Science

While the previous chapters were mostly retrospective analyses, compu-
tational social science is mostly in the “here and now”. The role of text
analysis is to provide evidence for how people relate to each other and
to their environment in particular contexts, for example social, political,
or economic interactions. The specific expression of any particular docu-
ment is usually of less importance. As a result, social science focuses on
data being generated in the most recent hours, days, or weeks to inform
intelligence analysts, brand monitors, journalists, or social scientists.
The underlying problem is the same, however: these stakeholders are
interested in what people have to say but cannot read all of the data at
their disposal.

Historically, social science asks questions about opinions. What
candidate is preferred in a particular part of the country? Do people
like a new restaurant or product? These questions are often answered
by polling: social scientists would head out into the world, gather a
statistically significant survey sample, and extrapolate to the broader
population.

These techniques remain foundational, but they take time. A com-
pany needs to know if it has an issue with a product immediately,
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particularly if its good name is being dragged through the mud on
social media [Bowen, 2016]. However, the reason for the acute time
pressure can also be the solution: if a company is able to quickly see
that it has a social media problem, it can more quickly intervene and
correct the issue.

Traditional social science methods are labor intensive, take a long
time, or are impossible for sensitive subjects. For instance, surveys
of influenza take too long to be useful compared to the life cycle of
influenza’s progression [Broniatowski et al., 2015], and approval ratings
may be too slow in the run-up to an election [O’Connor et al., 2010].
Using Twitter and Google searches results in more accurate information
faster.

Directly communicating with some populations may be difficult.
Using social media presents an alternative [Wang et al., 2015], as
individuals share information more freely than official news agencies
(which, for example, may suffer from official censorship in the case of
opinions about pollution in China) or in school-administered surveys
(which can suffer from self-censorship in the case of sexuality or drug
use). Topic models and other large-data approaches that can look at vast
quantities of text help overcome some of the obstacles to fast-response
social science.

The observational nature of topic models is both a weakness and
a strength. Analyzing documents through social media collection can
induce threats to validity. Researchers cannot necessarily control the
populations producing documents, the forum in which documents are
written, or the subject of documents. At the same time, observational
models have the advantage of increased potential for discovery. In a sur-
vey, researchers have to specify every question that will be asked. That
control is good for ensuring validity, but risks missing whole categories
of opinion that might not be obvious to researchers. Topic models can
complement this type of carefully designed survey by unearthing issues
or factors important to participants whether or not those issues were
anticipated. Thus unsupervised models can help in identifying questions
that researchers “forgot to ask”.



82 Computational Social Science

Prediction and Interpretation A common theme in using topic models
is whether models should prioritize prediction or interpretation. Different
topic models privilege each of these approaches. The distinction between
model applications mirrors, to some extent, the distinction between
quantitative and qualitative social science. Predictive applications are
closer to quantitative methodologies that focus on regression-based
methods that have clear input and output variables. Interpretative
applications are closer to qualitative methodologies that use human
intuition to explain complex processes. At the same time, the use of topic
models blurs the boundary between these two methodologies. Even when
used to support qualitative work, topic models apply computation, and
insulate researchers to an extent from pre-conceived biases (although
they bring their own modeling assumptions). Similarly, even when
used to support quantitative work, topic models enable researchers
to establish quantitative relationships between document metadata
variables and variables derived from messy, unstructured text that
might otherwise not have supported quantitative analysis.

The previous chapters have focused on interpretation: can a user
understand the output of a model? But for supervised models, there is a
question of how well the model can predict some parameter of interest,
such as sentiment or user engagement.

To some extent, these are not always in conflict. Ramage et al. [2010a]
show that topic model features can improve tweet categorization, as do
Blei and McAuliffe [2007] for supervised lda. However, changing the
objective function can further improve predictions [Zhu et al., 2009].

However, sometimes improved interpretability (Chapter 3.4) ham-
pers the ability of the model to predict content. This is true of both
words within a document and document labels. Chang et al. [2009]
showed that complicated topic models do a better job of predicting
held-out documents but make less sense to a user. Nguyen et al. [2015a]
show that supervised models offer better predictions with additional
topics but the topics are less interpretable.
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7.1 Topic Models for Qualitative Analysis

A common task in qualitative social science is to develop high-level
theories that explain social processes based on low-level observations,
such as field reports or ethnographic notes. One way to operational-
ize this process is the grounded theory method [Glaser and Strauss,
1967]. Grounded theory describes a process for iteratively developing
theories through repeated reading of source material. Baumer et al.
[2017] compare a manual grounded theory analysis and a topic model-
based analysis of survey response text describing people’s experiences
attempting to voluntarily leave Facebook.

They find that there are both theoretical and empirical connections
between these two approaches. At the theoretical level, both grounded
theory and probabilistic topic model algorithms are iterative, beginning
with rough, low-quality models/theories and refining them through
repeated passes through the documents. Both methods also seek to
maintain a close connection between the abstract representation and the
original data set: in Gibbs sampling, topics are “grounded” in specific
word tokens. At the empirical level, Baumer et al. [2017] find close
connections between the themes discovered by researchers manually
applying grounded theory procedures and topics discovered by an lda
model. But this result should not imply that human analysis is of no
additional value. They report that the thematic meaning of lda topics
was not immediately apparent from simple lists of high-frequency words.
Rather, the model was most useful as a way of suggesting a topic-specific
“reading list.” The “meaning” of topics was only clear at the theory level
by browsing the documents that had unusually high representation of
that topic. As such the topic model can best be thought of as a tool for
applying grounded theory more efficiently and with greater insulation
from human biases.

7.2 Sentiment Analysis

A useful way to think of the application of topic models in quantitative
social science is as a means of deriving a numeric variable from text.
Specific topics in a document can stand in for themes that may not be
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otherwise easily measurable. These inferred topic variables can then be
added to standard statistical methods to find connections between topics
and non-textual variables. As a motivating example, we first consider
sentiment analysis [Pang and Lee, 2008]. Here, the goal is to determine
the “sentiment”—e.g., positive or negative opinions—associated with a
piece of text. For example, “Chipotle is great!” would be associated with
positive sentiment, while “Chipotle made me sick” would be associated
with negative sentiment.

While commercial applications of sentiment analysis are mostly for
identifying whether people like a product or company, there are wider
social science applications of examining large corpora to determine
authors’ internal state. For example, political scientists may want to
classify social media users as liberal or conservative based on their
online commentary.

Topic models can help these tasks by dividing a problem into topics.
The contextual disambiguation provided by topics can be useful in
narrowing the range of applicable subjects. For example, “Apple” can
appear in tech news as well as a food ingredient; someone monitoring
the seller of iPods and iPhones would not want to be confused by
social media commentary complaining about the low quality of a Red
Delicious. Contextual disambiguation can also be useful because the
implied sentiment of words can vary considerably between domains.
The term “surprising” could be positive in a book review, but strongly
negative in an automobile review.

Topic-based sentiment analysis can, however, be problematic. The
objective of a topic model is to identify and separate the latent factors
that best explain the way combinations of words appear together in
documents. Sentiment can be subtle, and may not present the strongest
signal to an algorithm. For example, even though restaurant reviews
are specifically intended to be sentiment-bearing, topic models trained
on restaurant reviews mostly align with types of restaurants, producing
topics representing cuisines, such as Chinese, Mexican, and Thai. Topic
models also lose their value if you want to contrast sentiment within a
topic. While a topic model can find people discussing Chipotle burritos
online, it cannot separate the lovers from haters. Thus, distinguishing
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topics based on their sentiment can help a user better understand how
topics and sentiment interact in a dataset. This requires modifying the
topic model to make it aware of the underlying sentiment.

7.3 Upstream and Downstream Models

To distinguish topics based on their sentiment, the model must be aware
of a non-textual variable that represents sentiment. In the language
of probabilistic models, sentiment and topic are modeled jointly. That
is, there is for each document a probability distribution over both the
sentiment variable y and the topic assignments z.

There are two general kinds of joint models that incorporate meta-
data such as sentiment: upstream and downstream models. The dis-
tinction is based on the generative story of topic models (Chapter 1):
is sentiment before (upstream) or after (downstream) topics in the
generative story?

Upstream models assume that external variables such as sentiment
come first in the generative story. That is, there will be different topics
given the underlying sentiment. This can come in the form a hard-
coded distribution [Mei et al., 2007a], a prior learned from observed
sentiment [Mimno and McCallum, 2008], or from a latent variable that
can serve as a proxy for sentiment [Lin and He, 2009]. Upstream models
are often easier to implement and are more flexible [Roberts et al.,
2014] because they do not need to specify a generative distribution that
matches the form of the variable.

In contrast, downstream models explicitly predict variables such
as sentiment given text. If the goal is to later predict sentiment given
raw text with the help of topic models, downstream models can work
better than upstream models. These models are often called “supervised”
topic models after supervised lda [Blei and McAuliffe, 2007, slda],
which use a document’s topics to predict the downstream sentiment
using regression: a document’s sentiment yd is assumed to come from a
Gaussian distribution with mean η>z̄, where z̄ is a normalized vector of
all of the topics that a document uses and η is a regression parameter
that describes the sentiment of each topic.
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Figure 7.1: Example topics learned by supervised lda from Blei and McAuliffe
[2007]. Each topic is not just a collection of words but also has a regression score η
that explains whether it is associated with positive sentiment (right) or negative
sentiment (left).

During inference, the words and sentiments work together to find
combinations of topic and sentiment that make sense. While “vanilla”
topic models seek to find clusters of words that make sense together, if a
topic is associated with documents that have many different sentiment
values, it will have to learn a less focused distribution over sentiment
scores, resulting in lower probability.

Consider Figure 7.1. If a topic has an inconsistent sentiment value
(for example, a negative sentiment document in a positive sentiment
topic), inference will try to move the negative sentiment documents to
topics with consistent sentiment η and consistent words.

These models form the foundation for the models and problems we
discuss in the rest of this section.

7.4 Understanding Stance and Polarization

Another form of internal state is stance: which side does a person take
on an issue. This can take many forms: are you for or against a proposal,
are you a Democrat or a Republican, or are you a fan of the original
Star Trek or the new version?

Upstream models can discover these sides by incorporating stance
into the generative model. For example, several authors—Zhai et al.
[2004], Lu and Zhai [2008], and Paul and Girju [2010]—develop topic
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models that allow readers to compare aspects of a topic. They posit
that each comparative “side” has a distribution over words that it uses
generally and that each side had its own take on how it discusses a
topic. Within a document, each word is chosen either from a side’s
background distribution, a side’s version of the topic, or from the
topic’s “neutral” words. For instance, Israelis and Palestinians both
use “attacks”, “civilians”, and “military” in discussing unrest in Israeli-
occupied Palestine, but the Israeli side uses “terrorist” and “incitement”,
while the Palestinian side focuses on “resistance” and “occupation”.

The interaction between sentiment and aspect is unclear. Some
aspects are independent of sentiment, and other aspects are particularly
charged. Jo and Oh [2011] develop a model that first draws sentiment
distributions that constrain the aspects discussed in a document.

Downstream models can also capture these divisions as well. Nguyen
et al. [2013] predict whether a speaker is Republican or Democrat1 based
on the versions of topics they discuss, extending the non-predictive model
of Grimmer [2010]. For example, Republicans are more likely to discuss
taxes than Democrats, but Democrats focus on the good that comes
out of taxes (Figure 7.2).

However, there are not always two sides to an issue. A probabilistic
solution to this model is the nested Dirichlet process [Blei et al., 2010].
These hierarchies induce a non parametric hierarchy over an unbounded
number of topics. This corresponds to agenda setting from political
science [Nguyen et al., 2015b].

7.5 Social Networks and Media

We have talked about metadata that are independent for each user.
Sometimes, however, we are interested in metadata that describe the
relationships between documents: which users follow each other on

1In downstream models, which variables to use in the prediction is often up for
debate. Using lexical terms [Titov and McDonald, 2008, Zhao et al., 2010] in a
log-linear model typically works better: it is able to capture word-specific nuances
of sentiment and model situational sentiment (e.g., “unpredictable” is good for a
book but bad for a car’s steering). However, it leads to a more complicated, less
interpretable model.
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Figure 7.2: Topics discovered from Congressional floor debates using a down-
stream model to capture speaker’s ideology. Many first-level topics are biparti-
san (purple), while lower level topics are associated with specific ideologies
(Democrats blue, Republicans red). For example, the “tax” topic (B) is bipar-
tisan, but its Democratic-leaning child (D) focuses on social goals supported
by taxes (“children”, “education”, “health care”), while its Republican-leaning
child (C) focuses on business implications (“death tax”, “jobs”, “businesses”).
The number below each topic denotes the magnitude of a learned regression
parameter associated with that topic. Colors and the numbers beneath each
topic show the regression parameter η associated with the topic. From Nguyen
et al. [2013].

Twitter, which scientific papers cite each other, or which webpages link
to each other. This makes modeling more difficult, but we still see the
same division between upstream and downstream models: upstream
models assume that the communities form before we see words, while
downstream models use the words to explain which links we see.

The stochastic block model [Holland et al., 1983] and its mixed-
membership descendant [Airoldi et al., 2008] are prototypes for upstream
models. They posits that there are intrinsic groups of documents and
links are more likely inside the group than outside the group. These
groups are analogous to the topics in topic models, except that the links
are “shared” between documents.
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However, the first probabilistic models of network structure ignored
the words in documents. Because the network structure is tied to author
identity, it is natural to combine author identity with an upstream
model McCallum et al. [2007], Liu et al. [2009], conditioning topics on
authors and the communities the authors belong to.

Link lda is the exemplar for downstream models [Nallapati and
Cohen, 2008] and include the text in the documents. It uses a regression
on the topic allocations (θ) rather than topic assignments (z), in contrast
to supervised lda above. Similarly, Cha and Cho [2012] use followed
users to model downstream documents.

Conditioning on the topic assignments can improve the algorithm’s
ability to predict links on held-out documents, however [Chang and Blei,
2009]. This is because a regression based on the allocations alone can
use topics to explain links that aren’t in the document. For example, if
the model thinks there’s a link between documents because they both
use Topic 14 but no words in the document are assigned (zn = 14), then
the model is unable to recreate this prediction in a held-out document.

Not all topic models applied to social network attempt to predict
links. Weng et al. [2010] use the network structure of Twitter to find who
is influential within a topic, and several models use links to constrain
documents that are linked together to be similar [Mei et al., 2008, Sun
et al., 2009, Daumé III, 2009].

In addition to explicit links in social networks, social media is also
shaped by implicit links between people in similar contexts—events,
cultural, or regional patterns that affect how people talk and what they
talk about. Mei et al. [2006] capture how topics vary across region and
time (e.g., when a hurricane strikes a region, those closest to the eye of
the storm will talk about it with greater volume and more specifically).
Later work builds models location and topic jointly [Yin et al., 2011].

In constrast, Eisenstein [2017] focuses on lexical variation, captur-
ing how social media neologisms like “af” (a post-position intensifier,
particularly of adjectives: e.g., “the description was evasive af”) spread
from twin epicenters in southern California and Atlanta to the whole of
the US.
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7.5.1 Peculiarities of Social Media

Hong and Davison [2010] discuss how the short documents of social
media platforms like Twitter can confuse topic modeling algorithms, and
Zhao et al. [2011] expand on the analysis, showing topical differences
(e.g., Twitter often briefly follows fleeting topics passionately). Because
a document is limited to 140 character, the admixture assumptions of
topic models are limited. To capture trends over time or across users,
algorithms must also know connections between users or group messages
together over time [Mehrotra et al., 2013]. Other researchers develop
models with specific sparsity properties [Lin et al., 2014] to accomodate
the peculiarities of Twitter.

7.6 Summary

Computational social science can unlock the emotion and hidden factions
often present in online discussions. This is useful for companies trying
to understand their customers, for politicians trying to target voters,
for first responders reacting to a disaster [Kireyev et al., 2009], and
for academics trying to understand how online communication morphs
social norms.

However, as social networks increasingly span the entire globe,
assuming that a topic model is only in a single language is often a poor
assumption. Indeed, even within a single country, topic models can
discover regional variation [Eisenstein et al., 2010]. In the next chapter,
we discuss how to cope with multilingual datasets and still discover
coherent, language-independent topics.



8
Multilingual Data and Machine Translation

So far, we have been focusing on monolingual topic models and their
applications. But many collections contain documents in more than one
language. In practice, we often discover this phenomenon unexpectedly
after running an initial monolingual topic model: topic models turn out
to be very good at language identification. This behavior makes sense
because the model is looking for groups of words that appear frequently
together but not in other contexts, and separate languages have this
property. In some cases we may choose to filter out small numbers of
documents in other languages, but we would like to take advantage of
connections across many languages.

Multilingual topic models have been developed to analyze and
understand a corpus in multiple languages. Vulić et al. [2015] provide
a good overview. The applications in multi-language corpora can be
divided into two categories. The first, and simpler category is those that
align languages at the topical level, but not at the level of individual
word types. These models are useful for organizing corpora, but make
no attempt to support analysis for users unfamiliar with any particular
language. The second category is those that explicitly model word-level
alignments across languages. These models support applications in
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statistical machine translation (smt).
As one of the most frequent applications for multilingual topic

models, smt tries to find a sequence of words in one language which
match the meaning of a text input in another language. While the
training data of smt requires explicit aligned sentences in different
languages, multilingual topic models relax this data restriction and are
flexible to explore only loosely aligned data. In this chapter, we first
discuss how topic models are adapted to use multiple languages, and
then show how these multilingual topic models can help smt.

Before discussing specific methods, it is useful to define terms related
to data sources. The most salient feature for multilingual corpora is their
degree of alignment. Parallel corpora are the most closely aligned. These
collections comprise subsets of documents such that each set contains
documents in different languages that have the same semantic content
(up to the limits of translation). Common examples include translations
of literary works or translated government documents, where a transcript
of a speech in French is accompanied by a transcript of the same speech
in German, with as little semantic difference as possible. Comparable
corpora are less closely aligned. These collections also contain subsets
of documents, but each set is only constrained to be topically similar,
and not necessarily a direct translation. A common example is articles
in Wikipedia. The articles for the French city of Lille in English and
French Wikipedia are referring to the same place and contain much of
the same information, but the French version is considerably longer.
Mixed corpora are the least aligned. These collections simply contain
documents in more than one language, but there is not necessarily any
connection between any one document in one language and a document
in another language. An example might be a journal that publishes
in English, French, German, and Italian. No article is a translation
of any other article. There are likely to be topical overlaps between
articles, but there are not necessarily any structural indications of such
relationships. A last category of useful data, not necessarily in the form
of documents, is a bilingual lexicon that maps words in one language
to words in another. Lexicons of this form can be considered to be
examples of parallel corpora with single-token documents, but it is often
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useful to treat them specially.

8.1 Document-level Alignment from Multilingual Corpora

In a case where a user is browsing a multilingual collection with only
monolingual knowledge to find relevant documents, multilingual topic
models can help. Such collections contain multiple languages, but does
not necessarily have the exact matching or translations on words and
sentences. Only a coarse document alignment is necessary, as long as the
documents discuss the same topics, e.g., Wikipedia articles in different
languages. Such connection between languages is also helpful to infer
more robust topics, since different languages can complement each other
to reduce ambiguity.

This approach pre-dates probabilistic topic models. Landauer and
Littman [1990] connect aligned documents in different languages by
projecting both documents to a shared latent semantic indexing space.

Similarly, bilingual topic models [Zhao and Xing, 2006, De Smet
and Moens, 2009] and—more specifically—polylingual Latent Dirichlet
Allocation [Mimno et al., 2009, plda] assume that the aligned doc-
uments in different languages share the same topic distribution and
each language has a unique topic distribution over its word types. Thus
the generative process of polylingual topic model is as follows: given a
document pair (dl1 , dl2), we first sample a document-topic distribution
θd; for a document dli in language li, we then sample a topic zdn from
θd, and generate a word from topic φzdn,li in language li.

Topic models trained from document-level alignments have applica-
tions in exploratory data analysis and in information retrieval [Vulić
et al., 2013]. Mimno et al. [2009] use a model trained on multiple lan-
guages in Wikipedia to compare relative interest in different topics
across linguistic domains. For example, the Persian-language Wikipedia
has a larger than average number of articles about science, while the
Finnish-language Wikipedia has a larger than average number of articles
about skiing. These methods require parallel or comparable corpora,
but for mixed corpora the training data can be augmented with a sup-
plemental corpus of comparable documents as long as the comparable
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documents cover similar enough topics [Mimno, 2012].
It is not necessary to take “language” in its strict meaning. Loosely

aligned models have been applied in information retrieval for query
expansion [Gao et al., 2011, 2012]. While the topic models’ application
in information retrieval (Chapter 2) focus on a single language, Gao
et al. [2011] assume the queries and Web documents are in different
“languages”. The query language from users are normally informal oral
language, which are less formatted and may include abbreviation as well.
However, the document language are more formal and well organized
written language. For example, given a query “dtd amc”, the relevant
Web document may contain “downtown disney amc” [Jiang et al., 2016].

This semantic gap [Müller and Gurevych, 2009] between queries and
documents provides the possibility to treat queries and documents as
different languages, and the relevance between queries and documents
make them loosely aligned. Based on this assumption, they further
assume queries and documents share the same document-topic dis-
tributions θQ, but have different topic-word distributions φQz and φDz
respectively. In this way, documents and queries are connected through
the hidden topics, even though their vocabularies (topic-word distribu-
tions) are different. By summing over all possible topics, the relationship
between document term e and query q is

p(e | q) =
∑
k

p(e |φDk )p(k | θq). (8.1)

Some forms of query expansion across multiple languages do not
require explicit modeling of connections between topics [Vulić et al.,
2011a, 2015]. As noted in Chapter 2, Erlin [2017] use two independent
seeded models on English and German books to search for works about
epistemology. After manually identifying one epistemology topic from
each language’s model, these two topics are used as a form of query
expansion to identify documents related to the target subject.

Although it is relatively easy to get comparable topics from compara-
ble corpora, identifying specific words that are translations of each other
in different languages is more difficult. Given a word we that has high
probability in topic k in language e, it is likely that a good translation
of we in language f has high probability in topic k as well. Vulić et al.
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[2011b] evaluate several methods for identifying such translation pairs
given a bilingual or polylingual topic model. They find two methods
that work well, both of which consider the frequency of a given target
word across many topics. The intuition is that words that have high
probability in a given topic because they are specific to that topic are
more likely to be good translations than words that have high probabil-
ity in a topic because they are frequent in the corpus overall, and are
thus represented in many topics. The authors were then able to derive
an algorithm for finding high-quality aligned translation pairs [Vulić and
Moens, 2012]. This method is capable of using word patterns as hints
for etymologically related words when available, but is also effective
even for unrelated languages. However, there are limits to our ability to
find direct translation pairs with only document-level alignment, both
because the data is not sufficient, and because languages may align
more at the level of concepts rather than specific lexical items [Vulić
and Moens, 2014].

8.2 Word-level Alignment from Lexical Data

Aligned documents are useful when a collection is designed to be lightly
multilingual: e.g., when the creators are building a native-language
version of Wikipedia. Documents links are cheap and easy. However,
they require active support of those creating the collection, which is
not always available. Many collections are written in isolation.

However, one of the most ubiquitous multilingual tools is the dic-
tionary. This section discusses how we can use lexical information like
multilingual dictionaries [Zhang et al., 2010] and orthographic relations
between words [Boyd-Graber and Blei, 2009] to help users who want to
understand a collection.

For instance, tree-based topic models such as tree-based latent
Dirichlet allocation [Boyd-Graber et al., 2007, Andrzejewski et al., 2009,
tlda] incorporate positive correlations between words in the same or
different languages by encouraging words that appear together in a
concept to have similar probabilities given a topic.1 These concepts

1Zhang et al. [2010] use topic-level soft constraints to achieve a similar effect.
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computer, ��
market, 市�
government, 政府
science, 科学

Dictionary: Vocabulary: English (0), Chinese (1)

computer �� market 市� government 政府 science 科学

天气scientific policy

0    scientific
0    policy
1    ��
1    市�

0    computer  
0    market
0    government
0    science

1    政府
1    科学
1    天气

Prior Tree:  0  1

Figure 8.1: An example of constructing a prior tree from a bilingual dictionary:
word pairs with the same meaning but in different languages are concepts; a common
parent node is created to group words in a concept, and then is connected to the
root; uncorrelated words are connected to the root directly.

can come from WordNet [Boyd-Graber and Resnik, 2010], domain
experts [Andrzejewski et al., 2009], or user constraints [Hu et al., 2014a].
If these concepts are in the same language, the backend model is the
same as monolingual interactive topic modeling introduced in Chapter 3.
However, when we gather concepts from bilingual resources, these
concepts can connect different languages. For example, if a bilingual
dictionary defines “电脑” as “computer”, we combine these words in a
concept.

These concepts (positive correlations) are organized into a prior
tree structure. Words in the same concept share a common parent
node (Figure 8.1). That concept then becomes one of many children
of the root node. Words that are not in any concept—uncorrelated
words—are directly connected to the root node. Thus a topic becomes
a distribution over all paths in this prior tree and each path is associated
with a word.

The probability of a path in a topic depends on the transition
probabilities in a topic. Each concept i in topic k has a distribution
over its child nodes that is governed by a Dirichlet prior: πk,i ∼ Dir(βi).
Each path ends in a word (i.e., a leaf node) and the probability of a
path is the product of all of the transitions between topics it traverses.
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Topics have correlations over words because the Dirichlet parameters
can encode positive or negative correlations [Andrzejewski et al., 2009].

As a result, to sample a word wdn given a topic zdn, a path ydn
from the topic tree of topic zdn is sampled: we start from the root n0
and first sample a child node n1 of the root; if node n1 is a concept
node, we continue to sample a word node n2 and generate the word
associated with n2; if node n1 is a word node already, we generate the
word directly.

When this tree serves as a prior for topic models, words in the
same concept are positively correlated in topics. For example, if “电脑”
has high probability in a topic, so will “computer”, since they share
the same parent node. With the tree priors, each topic is no longer a
distribution over word types; instead, it is a distribution over paths,
and each path is associated with a word type. The same word could
appear in multiple paths, and each path represents a unique sense of
this word.

8.3 Alignment from Parallel Corpora and Lexical Information

Bilingual dictionaries and other sources of word-level information are
valuable in training multilingual models, because they can easily spec-
ify simple lexical relationships that might be difficult to extract from
parallel corpora. But such manually generated data may be brittle,
low-quality, or missing contextual differences in actual usage. These two
approaches are not mutually exclusive, however; they reveal different
connections across languages. Hu et al. [2014b] bring existing tree-based
Latent Dirichlet Allocation (tlda) and polylingual Latent Dirichlet
Allocation (plda) together and create the polylingual tree-based La-
tent Dirichlet allocation (ptlda) that incorporates both word-level
correlations and document-level alignment information.

To build up the prior tree structure, Hu et al. [2014b] consider two
resources that correlate words across languages. The first is multilingual
dictionaries, which match words with the same meaning in different
languages together. The other is the word alignments extracted from
aligned sentences in a parallel corpus. These relations between words are
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used as the concepts [Bhattacharya, 2006] in the prior tree (Figure 8.1).
Given the prior tree structure, the generation of documents is a

combination of tlda and plda. For each aligned document pair (dl1 , dl2),
we first sample a distribution over topics θd from a Dirichlet prior Dir(α).
For each token in the aligned document dli , we first sample a topic zdn
from the multinomial distribution θd, and then sample a path ydn along
the tree of topic zdn. Because every path ydn leads to a word wdn in
language ldn, we append the sampled word wdn to document dldn

in
language ldn.

If we use a flat symmetric Dirichlet prior in place of the tree prior, the
model is equivalent to plda. Similarly, if all documents are monolingual
(i.e., with distinct distributions over topics θ), the model is equivalent to
tlda. ptlda connects different languages on both the word level (using
the word correlations) and the document level (using the document
alignments), thus it learns better topics by considering more information
from both languages.

8.4 Topic Models and Machine Translation

The most frequent application of multilingual topic models is in machine
translation. Given a text input in one language (source language),
statistical machine translation tries to find a similar sequence of words
in another language (target language). Modern machine translation
systems [Koehn, 2009] use millions of training examples to learn the
translation rules and apply these rules on the test data. Topic models are
useful in this application when they can help to inform word meaning
and word choice in specific contexts. While the translation rules are
learned in local context, these systems work best when the training
corpus has a consistent domain, such as a genre (e.g., sports, business)
or style (e.g., newswire, blog-posts).

Translations within one domain are better than translations across
domains since they vary dramatically in their word choices and style.
A correct translation in one domain may be inappropriate in another
domain. For example, “潜水” in the sports domain usually means
“underwater diving”, but in the social media domain, it means a non-
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contributing “lurker”. To avoid such translation errors caused by domain
shift, train translation must be robust to such systematic variation in
the training set. This is called domain adaptation.

To train such smt systems, early efforts focused on building sepa-
rate models given the hand-labeled domains [Foster and Kuhn, 2007,
Matsoukas et al., 2009, Chiang et al., 2011]. However, this setup is
at best expensive and at worst infeasible for large data. Topic mod-
els provide a promising solution where domains can be automatically
discovered. Each extracted topic is treated as a soft domain.2 Thus
the normal monolingual topic models trained only on the source doc-
uments have been applied to extract domain knowledge for machine
translation [Eidelman et al., 2012].

However, the source language the and target language can comple-
ment each other to build up more accurate topic models. For example,
if we only know the Chinese phrase “潜水”, it is hard to decide whether
it is a sport domain or it is a social media domain. However, with the
help of the aligned English translation “lurker”, it is easy to identify
the “social media” domain. Thus multilingual topic models [Ni et al.,
2009, De Smet and Moens, 2009] have been applied to extract domain
knowledge for machine translation [Hu et al., 2014b].

8.5 The Components of Statistical Machine Translation

Statistical machine translation represents translation as a combination of
probabilistic processes, a phrase-level translation model and a sentence-
level language model [Koehn et al., 2003, Koehn, 2009]. Topic models
have been applied to both aspects of this process.

The actual process of translation is also known as decoding, which is
to find the best translation target sentence e given the source sentence
f . Formally, Given a source sentence f , the best translation in target
language ebest is

ebest = argmaxep(e|f) = argmaxep(f |e)p(e), (8.2)

which is split to a translation model p(f |e) and a language model p(e).
2Henceforth we will use the term “topic” and “domain” interchangeably: “topic”

to refer to a word distribution in topic models and “domain” to refer to smt corpora.
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Intuitively, a good translation should be both a good match for the
source sentence (scoring high in the translation model) and a good
sentence in its own right (scoring high in the language model).

In the decoding phase, the source sentence f is segmented into mul-
tiple source phrases f̄n, which are translated to a set of target phrases
ēn. Thus the translation probability p(f |e) can be further decomposed
to the phrase translation probability p(f̄n|ēn). In the reordering phase
target phrases may then need to be repositioned to get the best trans-
lation result. Reordering is captured by a relative distortion probability
distribution d(an − bn−1), where ai denotes the start position of the
source phrase that was translated to the nth target phrase, and bn−1 de-
notes the end position of the source phrase translated into the (n− 1)th
target phrase. As a result, the translation model decomposes into

p(f | e) =
∏
n

p(f̄n | ēn)d(an − bn−1) (8.3)

In phrase-based smt, the phrase probability p(f̄n | ēn) can be fur-
ther estimated by combining lexical translation probabilities of words
contained in that phrase [Koehn et al., 2003], which is normally re-
ferred as lexical weighting. Lexical conditional probabilities pw(f | e) are
maximum likelihood estimates from relative lexical frequencies,

pw(f | e) = c(f, e)
/∑

f c(f, e) (8.4)

where c(f, e) is the count of observing lexical pair (f, e) in the training
dataset. Given a word alignment a, the lexical weight for this phrase
pair pw(f̄ | ē; a) is the normalized product of lexical probabilities of the
aligned word pairs within that phrase pair:

pw(f̄ | ē; a) =
∏
i

1
{|j | (i, j) ∈ a}|

∑
∀(i,j)∈a

pw(fi | ej) (8.5)

where i and j are the word positions in target phrase ē and source
phrase f̄ .

Next we introduce how to apply topic models to improve translation
models, language models, and reordering models respectively.
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8.6 Topic Models for Phrase-level Translation

Translation models map words and phrases from one language to another.
Both monolingual topic models and bilingual topic models are useful for
improving translation models. As we have mentioned in Section 8.4, the
most prominent application of topic models is in domain adaptation.

Early work for extracting domain knowledge focus on the hand-
labeled domains [Foster and Kuhn, 2007, Matsoukas et al., 2009, Chiang
et al., 2011]. These labels are not only expensive and time consuming
to obtain, but also unsmoothed and sensitive to labeling errors and
inconsistency. Besides, such hard domain labels are difficult to apply and
can decrease the robustness of translations: domains are fundamentally
uncertain, and if you get the domain wrong, you may cut off useful
information.

Topic models provide a way of automatically discovering soft
domain assignments. If we equate the K topic distributions over the
vocabulary in a topic model with K smt domains, each document’s
topic distribution can be viewed as a soft domain assignment for that
document. If there are two topics sports and social media and a test
example is most likely about sports, it may have a soft domain distribu-
tion as 85% for sports domain and 15% for social media domain. These
automatically obtained soft domain labels are well smoothed, and they
are not only cheap to obtain but also much more robust to topic errors.
We next describe applications of monolingual and multilingual topic
models to improve translation models [Eidelman et al., 2012, Hu et al.,
2014b].

Translations from Monolingual Topic Models We can train a transla-
tion model by counting the frequency of pairs from word-level alignment
data. Eidelman et al. [2012] builds topic-specific translation models by
reweighting the frequency of word pairs based on soft topic/domain
assignments for documents. Since a translated document is assumed to
have the same topics in both languages, we only require a monolingual
topic model trained on one or the other language. The document-topic
distribution p(k | d) is used to smooth the expected count ĉk(f, e) of a
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word translation pair under topic k,

ĉk(f, e) =
∑
d p(k | d)cd(f, e), (8.6)

where cd(•) is the number of occurrences of the word pair in document
d. The lexical probability conditioned on topic k is the unsmoothed
probability estimate of those expected counts

pw(f |e; k) = ĉk(f, e)/
∑
f ĉk(f, e), (8.7)

from which we can compute the lexical weight of this phrase pair
pw(f̄ | ē; a, k) given a word alignment a [Koehn et al., 2003]:

pw(f̄ | ē; a, k) =
n∏
i=1

1
{|j | (i, j) ∈ a}|

∑
∀(i,j)∈a

pw(fi | ej ; k) (8.8)

where i and j are the word positions in target phrase ē and source phrase
f̄ respectively. Equations 8.7 and 8.8 are equivalent to Equations 8.4–8.5,
but with the addition of soft topic/domain assignments. Eidelman et al.
[2012] combine the standard f(f̄ |ē) and f(ē|f̄) with two directions of
topic-adapted probabilities pw(f̄ |ē; a, k) and pw(ē|f̄ ; a, k), equivalent to
introducing 2K new word translation tables. Feature weights are opti-
mized through using the Margin Infused Relaxed Algorithm [Crammer
et al., 2006, mira].

For a test document d, the document topic distribution p(k | d) is
inferred based on the topics learned from training data. The lexical
weight feature of a phrase pair (f̄ , ē) is

fk(f̄ | ē) = − log
{
pw(f̄ | ē; k) · p(k | d)

}
, (8.9)

a combination of the topic dependent lexical weight and the topic
distribution of the document, from which we extract the phrase.

These adapted features allow us to bias the translations according
to the topics. For example, if topic k is dominant in a test document,
the feature fk(f̄ | ē) will be large, which may bias the decoder to a
translation that has small value of the standard feature f(f̄ | ē). In
addition, combining the adapted features with the standard features
makes this model more flexible. For a test document with less clear
topics, the topic distribution will tend toward being fairly uniform. In
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this case, the topic features will contribute less to the translation results
and the standard features will dominate the translation results.

Hasler et al. [2012] also apply monolingual topic models for domain
adaptation to smt in a similar framework as Eidelman et al. [2012],
except they apply hidden topic Markov models [Gruber et al., 2007,
htmm] instead of lda to learn topics and extract different features.
While lda assumes that each word is generated independently in a
document, htmm models the word topic in a document as a Markov
chain where all words in a sentence are assigned with the same topic.
As a result, the topic for each phrase pair in the aligned sentence is
consistent and can be used for topical features directly.

Su et al. [2012] use htmm to incorporate topic information into the
phrase probability directly, rather than through the word translation
probability. Given the bilingual translation training data without any
specific domain information (referred as out-of-domain bilingual data),
they incorporate topic information from the source language into trans-
lation probability estimation, and decompose the phrase probability
p(ē | f̄) as

p(ē | f̄) =
∑
kout

p(ē, kout | f̄) =
∑
kout

p(ē | f̄ , kout) · p(kout | f̄) (8.10)

where p(ē | f̄ , kout) is the translation probability given the source side
topic kout, and p(kout|f̄) denotes the phrase probability in topic kout.

In addition, Su et al. [2012] assume a monolingual corpus in the
same domain as the test sentence (called “in-domain monolingual data”).
Thus they also apply htmm to estimate the in-domain topic kin and
p(kin | f̄). However, the in-domain topics kin and the out-of-domain
topics kout may not be in the same space, so Su et al. [2012] introduce
the topic mapping probability p(kout | kin) to map the in-domain topic
to the out-of-domain topic:

p(kout | f̄) =
∑
kin

p(kout | kin) · p(kin | f̄) (8.11)

As a result, the final phrase probability becomes

p(ē | f̄) =
∑
kout

∑
kin

p(ē | f̄ , kout) · p(kout | kin) · p(kin | f̄). (8.12)
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The topic and topic mapping relationship between the training data and
test data can be built offline, so the whole process adds no additional
burden to the translation system.

Monolingual topic models can add contextual information about
word choice to translation models, but do not by themselves take
advantage of multilingual information. We next turn to topic models
that explicitly learn multilingual connections between words.

Multilingual Information for Domain Adaptation Using bilingual
data adds modeling complexity, but can also improve topic model
quality. One can think of topic models as tools for disambiguating
the meaning of words based on their context. Aligning across multiple
languages is a common way of resolving such ambiguities. For exam-
ple, “木马” in a Chinese document can be either “hobbyhorse” in a
children’s topic, or “Trojan virus” in a technology topic. A monolingual
topic model might not be able to tell the difference in a short Chinese
document, but these terms are unambiguous in English, more accurately
indicating the relevant topic.

While many of the approaches described in this chapter try to
model the source and target languages simultaneously to extract topics,
some of the benefit of multilingual models can be achieved by aligning
monolingual models. Xiao et al. [2012] apply topic models on the source
documents and target documents separately to learn the document-topic
distributions p(kf | df ) and p(ke | de), and then estimate the phrase-topic
probabilities p(ē, kf | f̄) and p(ē, ke | f̄) from each model. They further
compute the topic similarity scores between the phrase topic distribution
and document topic distribution as features for decoding to improve
smt results.

To translate a new document df , they first estimate the document-
topic distribution p(kf | df ). Then for a given phrase f̄ in the source
document they search for the target phrase ē that maximizes the simi-
larity between the source document’s topic distribution p(kf | df ) and
the phrase-topic distribution p(ē, kf | f̄) according to squared Hellinger
distance H2(p, q) =

∑
k

(√
pk −

√
qk
)2. Second, they calculate a projec-

tion between the two monolingual topic models p(kf | ke) by normalizing
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the co-occurrence count in the aligned training sentences, and use this
relationship to calculate the conditional distribution of target phrases
and target topics p(ē, ke | f̄).

This topic projection resembles the topic mapping by Su et al. [2012],
but it is applied between the source language and the target language.
Compared to the lexical features in Eidelman et al. [2012] and Hu et al.
[2014b], Xiao et al. [2012] introduce a new framework to apply topic
information directly to measure the relationship between phrases and
present two topic similarity features for decoding. These two approaches
can be combined to further improve smt.

8.7 Topic Models for Sentence-level Language Modeling

A critical component of machine translation systems is the language
model, which provide local constraints and preferences to make trans-
lations more coherent. A language model describes the probability of
a word w occurring given the previous context words, which is also
mentioned as the history h (Chapter 2.1 discusses language models
for information retrieval). They also help choose the correct or more
appropriate word during statistical machine translation. For example,
the English words “house” and “home” are often synonymous, but the
translation “I am going home” is better than “I am going house”.

Domain adaptation for language models [Bellegarda, 2004, Wood
and Teh, 2009] use extra knowledge to adjust this probability p(w |h) to
reflect a change in context, which is an important avenue for improving
machine translation. As Bellegarda [2004] points out, “an adaptive
language model seeks to maintain an adequate representation of the
current task domain under changing conditions involving potential
variations in vocabulary, syntax, content, and style”.

Topics from topic models can be one of the resources to provide such
knowledge for language model adaptation. For example, the Chinese
phrase “很多粉丝” is translated to “a lot of vermicelli” in a food domain,
but means “a lot of fans” in an entertainment domain. Such ambiguity
can be reduced by using topic/domain knowledge. If the entertainment
topic is extracted based on the previous context, this Chinese phrase
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will be translated to “a lot of fans” without any ambiguity. Next, we
introduce the details about applying topic models for language model
adaptation.

Language Model Adaptation from Monolingual Topic Models Early
work [Clarkson and Robinson, 1997, Seymore and Rosenfeld, 1997,
Kneser and Peters, 1997, Iyer and Ostendorf, 1999] focuses on parti-
tioning the training data to multiple topic-specific subsets and building
up language models for each subset. Then the topic-specific language
models pk(w |h) are linearly combined with a general language model
pg(w |h) built from all training data as Equation 8.13. The weights λk
can be tuned based on the topics of the test documents.

padapted(w |h) =
∑
k

λkpk(w |h) + λgpg(w |h) (8.13)

Seymore et al. [1998] further identify the most appropriate topic for
each word in the vocabulary and choose either a topic-specific language
model or the general language model. The intuition is that the general
language model provides the most reliable estimation for general words,
and the topic language model estimates the probability more accurately
for more specific words. As a result, they split the vocabulary words into
three groups: the general subset, on-topic subset and off-topic subsets.
They use the general language model for the general subset and the
off-topic subset and the topic-specific language model for the on-topic
subset.

All of these methods use a traditional n-gram model, which con-
ditions on a finite, bounded history. These models also assume each
document or history belongs to exactly one topic cluster. To fix these
problems, models with topic mixtures, such as Latent Semantic Anal-
ysis [Deerwester et al., 1990, lsa] and its probabilistic interpretation
probabilistic latent semantic indexing (plsi) [Hofmann, 1999a, plsi],
learn large-span language models [Bellegarda, 1997, Coccaro and Ju-
rafsky, 1998, Gildea and Hofmann, 1999]. Gildea and Hofmann [1999]
decomposes the language model based on topics,

p(w |h) =
∑
k

p(w | k)p(k |h) (8.14)
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where the topics are learned from the training corpus by optimizing the
log probability,

l(θ;N) =
∑
w

∑
d

n(w, d) log
∑
k

p(w | k)p(k | d) (8.15)

where d is the training documents, and n(w, d) is the word frequency
of w in document d. p(w | k) and p(k | d) are learned through the EM
algorithm. For test documents, they fix p(w | k) to estimate p(k |h) and
then compute p(w |h) using Equation 8.14.

This way of applying topic models to language models is similar to
document language modeling for information retrieval as in Chapter 2.1.
However, unlike information retrieval, two different languages are in-
volved in the process of smt, and they can complement each other to
learn more accurate topics. Next, we discuss multilingual topic models
for language model adaptation.

Language Model Adaptation from Multilingual Topic Models As
we explain in Section 8.6, the information from different languages can
complement each other to extract better topics. Latent semantic models
such as lsa have been used in multilingual information retrieval for
many years [Carbonell et al., 1997]. We now describe approaches to
add multilingual information to probabilistic topic models for language
model adaptation.

Tam et al. [2007] introduce bilingual latent semantic analysis (blsa)
to learn the topics for both source language and target language and
apply the learned topics to language model adaptation for smt. Similar
to polylingual topic models [Mimno et al., 2009], blsa transfers the
inferred topics from the source language to the parallel target language.

More specifically, Tam et al. [2007] assume the aligned source doc-
ument and the target document share the same document-topic dis-
tribution. They first learn an lsa model on the source language and
then use the document-topic vector from the source document as the
document-topic vector for the aligned target document, and then infer
the topic-word vector on the target side. The topics for the target
language are not learned iteratively, thus the topics in a parallel corpus
can be learned very efficiently.
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To apply the topics for language adaptation, the word marginal
distribution plsa(w) for document d is computed,

plsa(w) =
K∑
k=1

p(w | k)p(k | d) (8.16)

Then this word marginal distribution is integrated into the target
background language model by minimizing the KL divergence between
the adapted language model and the background language model [Kneser
et al., 1997]:

pa(w |h) ∝
(
plsa(w)
pbg(w)

)β
· pbg(w |h) (8.17)

Ruiz and Federico [2011] apply a similar idea for language model
adaptation. Instead of using blsa, Ruiz and Federico [2011] merge the
aligned source and target document as one document, and train plsi.
Both ideas are based on the assumption that the aligned source docu-
ment and target document share the same document-topic distribution.
The final adapted language model combines the topic-based language
model with the general background language model, thus it is more
robust in improving the results of smt.

Yu et al. [2013] present a hidden topic Markov model (htmm) to
improve the language model in smt. They build up a topic model on
the source side and target side respectively, and learn a topic-specific
language model based on the target side by estimating the maximum-
likelihood. To smooth the sharply distributed probabilities, they back
off to other distributions:

p(wi |wi−1
i−n+1, ke) =λwi−1

i−n+1
pMLE(wi |wi−1

i−n+1, ke) (8.18)

+ (1− λwi−1
i−n+1

)pMLE(wi |wi−1
i−n+2, ke) (8.19)

where λ is the normalization parameter

λwi−1
i−n+1,ke

=
N1+(wi−1

i−n−1, ke)
N1+(wi−1

i−n−1, ke) +
∑
wi
c(wii−n+1, ke)

(8.20)

where N1+(wi−1
i−n−1, ke) is the number of words following wi−1

i−n−1 in topic
ke, and c(wii−n+1, ke) is the count of n-gram wii−n+1 in ke.
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Topic Type Example

Economy Source · · · 比比比五五五 月份下降3.8% · · ·
Target · · · down 3.8% from May · · ·

Sports Source · · · 五五五比比比一3.8% · · ·
Target · · · five to one · · ·

Table 8.1: Topics influence the word orders: the Chinese words in bold are in
different orders in different topics. (Example from Wang et al. [2014])

During decoding, since no target sentence is available, they extract
the topics on the source side and project the source topic to the target
side. The target probability is:

p(e) =
∑
ke

p(e | ke)p(ke) =
∑
ke

p(e | ke) ·
∑
kf

p(ke | kf )p(kf ) (8.21)

where p(ke | kf ) is the topic projection probability, estimated by the
co-occurrence of the source-side and the target-side topic assignment.

8.8 Reordering with Topic Models

In addition to translation models and languages models, a third im-
portant component of a phrase-based smt system is reordering models,
which learn how the order of words in the source sentences influences
the order of words in the target sentences and how to make the transla-
tions in the right order. The usefulness of topic models in reordering
is less clear than their usefulness for domain adaptation of translation
models and language models, but it is nevertheless significant. The
primary advantage is that word order in different domains of the same
language may be different: Chen et al. [2013] find that training corpora
in different domains vary significantly in their reordering characteristics
for particular phrase pairs. As the example shown in Table 8.1 [Wang
et al., 2014], in an economy topic, the Chinese word 比 is on the left
of 五; but in a sports topic, 比 is on the right of 五. As a result, it is
necessary to introduce domain knowledge to model such order variance,
and topic models provide a good data-driven way to do so.
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Xiong et al. [2006] treat the reordering problem as a classification
with two labels: straight and inverted between two consecutive blocks,
and build up a maximum entropy classification model as the reordering
model. Chen et al. [2013] manually divide the training data into multiple
domains, instead of using automatic techniques such as topic models.
Wang et al. [2014] integrate two more types of topic-based features into
the reordering model, in addition to the boundary word features [Xiong
et al., 2006]. First, they choose the topic with maximum probability in a
document to be the document topic feature for that document. Besides,
they also use the topics of the content words that locate at the left and
rightmost positions on the source phrases as the word topic features to
capture topic-sensitive reordering patterns.

During the decoding process, Xiong et al. [2006] infer the topic
distributions of the test documents first and then apply this proposed
topic-based reordering model as one sub-model to the log-linear maxi-
mum entropy model to obtain the best translation:

ebest = argmaxe

{
M∑
m=1

λmhm(e, f)
}

(8.22)

where hm(e, f) are the sub-models or features of the whole log-linear
model, λm are their weights accordingly, which are tuned on the devel-
opment set.

This framework is very flexible and can encode any topic-based
features. Any multilingual topic models we have discussed so far can be
applied to extract better topics.

8.9 Beyond Domain Adaptation

In addition to translation models, language models and reordering mod-
els, there are also other modules of smt, such as word alignment, where
topic models have also been applied. The Bilingual topical admixture
model Zhao and Xing [2006, BiTAM] assumes each document pair is an
admixture of topics, and the topics for each sentence pair within that
document pair are sampled from the same document-topic distribution.
Each topic also has a topic-specific translation table. Therefore, the
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sentence-level word alignment and translations are coupled by the hid-
den topics. BiTAM captures the latent topical structure and generalizes
word alignments and translations via topics shared across sentence pairs,
thus the quality of the alignments is improved.

In addition, coherence, which ties sentences of text into a meaning-
fully connected structure [Xiong and Zhang, 2013], is another important
piece to smt. Xiong and Zhang [2013] introduce a topic-based coherence
model to improve the document translation quality. They learn the
sentence topic for source documents, based on which they predict the
target topic chain; they then incorporate the predicted target coherence
chain into the document translation decoding process.

8.10 Summary

Topic models are not limited to a single language and different languages
can be connected on either document level or word level. Multilingual
topic models obtain topics with high quality, since different languages
can complement each other to reduce topic ambiguity. Many different
approaches apply multilingual topic models to improve different pieces of
the statistical machine translation pipeline. With such topic knowledge,
the variations of different languages can be better captured to make the
translations more natural and coherent.



9
Building a Topic Model

Previous chapters have focused on existing models. We have thus far
described models that researchers have created to capture particular
nuances of documents or document-creating processes that exist in the
world. This chapter focuses on how a researcher can create, implement,
and validate a new model.

Before going into the details of constructing new models, we en-
courage users to consider whether questions can be answered through
post-hoc analysis of a simple topic model with additional information.
For example, a simple dynamic topic model can be constructed from a
standard lda model by slicing the corpus into sections and estimating
the probability distribution over words for each topic in each section.
Building and validating custom topic models is a powerful tool, but
requires significant investment in coding and debugging, and may not
be able to take advantage of computational optimizations available for
simpler models. Posterior predictive checks [Mimno and Blei, 2011]
provide a good means of determining whether lda topics or words
within topics already show patterns that are present but not explicitly
modeled.

It is impossible to cover all of the details of research in topic models

112
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or machine learning generally, but this chapter introduces some of the
common techniques for creating new models. We will focus on a running
example, creating a new model for predicting the ideology of a political
speaker.

9.1 Designing a Model

The first step in creating a new model is to define what is important.
For example, previous chapters have focused on measuring innovation,
cross-language connections, and sentiment. These are high-level concepts
that we want to discover from text. We believe these properties exist in
the world, but we want the variables of our models to represent these
concepts.

In a topic model, incorporating a new concept into the model usually
involves adding a new random variable to the model. This is where
intuitions and domain knowledge come to the forefront. Because the
generative process attempts to model the real world, a new model
must balance several components that are often in tension: fidelity,
performance, tractability, and interpretability.

Fidelity A good model should reflect the world. One of the ways we
can model the relationship between words and non-word information
is to define conditioning patterns. If political scientists believe that a
politician’s ideology is a property that changes how they speak, then
the model should condition topic choices on a speaker’s ideology. Mimno
and McCallum [2008] describe this formulation as an “upstream” model
(for more details see Chapter 7). If they believe that electoral success is
a result of political speech, then the model should condition success on
topics (a “downstream” model).

Modeling reality is a good idea. But just as building a scale model of
a building requires compromising materials and level of detail, building a
statistical model sometimes requires unreal assumptions. If a generative
model exactly matches the process that produces data, we can prove
that it will converge to the correct answer [Neal, 1993]. But humans
and text are not Dirichlet and discrete distributions; all models will be
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an approximation.
In addition to determining where to model a feature in a generative

model, you must decide how to model it. Is it a continuous value, a
binary value, a member of a discrete set, or something else? Often, we
have multiple pre-defined notions of how to represent a quantity of
interest. Sentiment is sometimes represented as a continuous positive
or negative value, while review corpora include discrete, positive star
ratings. Political ideology could be represented by membership in one
of a fixed number of parties, but political scientists more often assign a
continuous value to a politician’s ideology.

Performance Greater fidelity to our perceptions of how the world
works does not always imply that models will be more useful. We
sometimes have to trade off fidelity with performance. Recent work
seems to agree that downstream models work better even though they
are less realistic [Nguyen et al., 2013].1

It is nearly impossible to know a priori whether a model will work
well for a particular task given just the model. Knowing what will work
best is often a trial-and-error process. However, it is often possible to
draw parallels from similar models. Upstream models allow metadata
variables to better predict which topics will occur in a context, but they
do not necessarily encourage the model to learn different topics than a
model without metadata. Downstream models must align topics to best
predict a metadata variable, and therefore tend to find different (but
not necessarily better) topics. Supervised topic models have therefore
worked well for predicting sentiment as a downstream variable, so it
might be reasonable to assume that a downstream model would work
well for ideology as well.

Tractability Now that we know what variable we want to model, some
approaches to model that variable could be easier than others. Political
ideology is often thought of as a spectrum rather than a label: some

1One might argue that it is more realistic for a listener who must interpret speech
to assign an ideology after it has been heard, but this is no longer consistent with
how the text was generated.
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politicians are more centrist than others even though they might have
the same party label.

However, discrete labels are appealing from a modeling perspective.
Dirichlet-discrete distributions (Chapter 1) are easy to to combine.
Given that basic topic models are built from Dirichlets and discrete
distributions, it is easier to add an additional Dirichlet-discrete than
to add a continuous random variable to the model. For example, the
Topic-Aspect model [Paul and Girju, 2010] is far simpler to implement
than Supervised Topic Models [Blei and McAuliffe, 2007].

Dirichlets and discrete distributions play well together because they
are conjugate, while Gaussian distributions add additional difficulty.
However, Gaussian distributions are more convenient than other dis-
tributions. For example, spherical distributions [Batmanghelich et al.,
2016] are thought to better model continuous embeddings of words than
Gaussian distributions but come at the cost of a less tractable model.

Even worse are combinatorial probability distributions. For example,
in Chapter 8 we discussed how to learn mappings across languages.
Boyd-Graber and Blei [2009] use a combinatorial distribution to learn
the mapping from one language to another. It is very complicated but
does not model languages as well as far simpler approaches [Mimno
et al., 2009].

Our listing of ever more complicated distributions should not be
taken as an admonition against using them: sometimes complicated
models are necessary. However, one should not choose a complicated
model just because it is complicated (an alluring temptation to young
graduate students who want to show off their machine learning chops).
It is best to try the simplest possible model that could work; even if it
fails, this model can serve as a useful baseline.

Unlike many of the other dimensions when building a model, com-
plexity is often sought and fetishized without improving the other
dimensions (perverse incentives from publications often play a role in
this). Thus, guard against unnecessarily complicating a model!

Interpretability As we describe in Chapter 3.4, interpretability is a
measure of how easy it is for a human to understand the results of
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a model. Often, the interpretability of a model is an afterthought.
That is, if it is thought of at all; many papers neglect to inspect the
learned parameters of a model, focusing instead on quantifications of
performance.

While always a problem, with the increased prominence of deep
learning (discussed more in Chapter 10), this is particularly worrying.
Deep learning has a reputation for inscrutable parameters but state-of-
the-art performance. One of the strengths of probabilistic models is their
interpretability and grounded generative processes. Thus, researchers
who choose probabilistic models such as topic models should not ignore
the interpretability of their models.

While Chapter 3.4 discusses rigorous evaluations of model inter-
pretability, even a simple once-over of model parameters by the re-
searcher can reveal whether a learned model “makes sense” or not.
Inspecting the model can help buttress whether the design of the model
(“fidelity”, above) was able to capture the intuitions of the modeler.

However, there are often tradeoffs with interpretability (as with the
choice of a deep learning model). Chang and Blei [2009] found that the
Correlated Topic Model [Blei and Lafferty, 2007] had markedly higher
held-out likelihood at the cost of interpretability.

9.2 Implementing the Model

So you have a new model in hand. This is usually described as a
generative process (Chapter 1.4): a sequence of probabilistic steps that
tells a story of how your data came to be.

Implementing a model requires writing down this model in a form
that a computer can understand and then using probabilistic inference
work backward from data to discover the configuration of the latent
variables (topics, other properties of the data you’ve added as part of
the model-building process) that best describe your data.

9.2.1 Automatic Approaches

Automatic approaches for inference are attractive: write down your
model and call it a day. However, automatic approaches do have several
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drawbacks. They are often restricted to specific platforms, are slower
than inference “by hand”, and restrict the kinds of models you can
explore.

Using a tool (no matter how wonderful) developed by someone else
means that you must accept their assumptions. It may force you to use
a programming language that you are unfamiliar with, it may force you
to format your data in odd ways, or it may restrict you to operating
systems you do not use (or cannot afford).

Stan Stan [Stan Development Team, 2014] is an inference framework
that works best with the R programming language.

Infer.Net Infer.net [Minka et al., 2014] is a Microsoft-created, closed-
source framework designed for conjugate models but can only be used
on the Windows operating system.

Automatic Differentiation The advent of deep learning has created a
variety of auto-differentiation platforms. These can often be used for
arbitrary objective functions including variational inference. If you are
already familiar with Torch [Collobert et al., 2011] or Theano [Theano
Development Team, 2016], it is relatively easy to use these tools to
define variational objectives for arbitrary probabilistic models.

9.2.2 Variational Inference

While we focused on Gibbs sampling in Chapter 1.4, the other major
class of inference algorithms is variational inference. Compared to Gibbs
sampling, variational inference is often considered to be slightly more
difficult to both derive and implement.

Variational inference resembles expectation maximization algo-
rithms [Liang and Klein, 2007]. Expectation maximization algorithms
find a setting of local latent variables z (which represent specific obser-
vations) and global parameters θ (which represent model properties)
that maximize the data likelihood p(x | z, θ). First, we start with some
guess of what the latent variables might be z0. Then we update the
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parameters to be
arg max

θ
p(x | z, θ), (9.1)

the parameters that maximize the likelihood. Then, given those param-
eters, compute the expected value of the latent variables z to compute
the next iteration of latent variables z.

Expectation maximization is a useful tool for inference when the
model distribution p is simple enough to solve Equation 9.1 directly.
However, for many models (including topic models), this is not feasible.
Variational inference solves this intractability by searching for optimal
distributions q(z) and q(θ) rather than optimal values of z and θ. It is
this search for optimal functions (i.e., probability distribution functions)
rather than optimal values that gives this method its name: the “calculus
of variations” is the branch of calculus concerning optimal functions.

A variational distribution is a function that assigns a probability
score to each setting of the model’s latent variables. These are the same
variables that would appear in the original model’s posterior distri-
bution over latent variables given observed variables and user-defined
hyperparameters. Although it is a distribution over the same variables,
it is typically simpler. In the original posterior distribution, there are
many dependencies between variables: the topics for one document
constraints the topics for other documents. In common approaches for
topic models [Blei et al., 2003], the distribution is fully factorized to
break these constraints. For example, the true distribution over latent
variables is

p(z, θ) =
∏
k

p(φk |β)
∏
d

p(θd |αu)
∏
n

p(zd,n | θd)p(wd,n |βzd,n
) (9.2)

where u is a K-dimensional uniform distribution, while the variational
distribution is

q(z, θ, β) =
∏
k

q(βk |λk)
∏
d

q(θd | γd)q(zd,n |φd,n), (9.3)

where λ and γ are Dirichlet parameters that describe the model’s latent
variables. Although functionally the same as the true distribution p,
because the parameters are no longer tied, they are called variational
parameters.
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Instead of maximizing the data likelihood, variational inference min-
imizes the distance between the variational distribution q (a product of
independent distributions over each of the latent variables) and the origi-
nal model posterior distribution p. Here, distance is the Kullback-Leibler
divergence between the distributions p and q. Minimizing this divergence
is equivalent to optimizing a lower bound of the data likelihood,

` ≡ Eq [log (p(w | z, θ)p(z, θ|α, β))]− Eq [log q(z, θ)] (9.4)

There are several options for this optimization: direct optimization,
stochastic gradient [Hoffman et al., 2010], or coordinate ascent [Blei
et al., 2003].

Deriving the Objective Function Once you have chosen a variational
distribution, you need to derive the full form of the objective and
compute the updates for each variational parameter. This involves
taking the derivative of Equation 9.4 with respect to that variational
parameter, setting it equal to zero, and then solving for the variational
parameter.

Choosing a Variational Distribution On one hand, you want to choose
a variational distribution that is close to the true distribution over the
latent variables. In fact, if you choose q so that it is equal to p, variational
inference reduces to expectation maximization.

However, choosing a more accurate variational distribution often
comes at a cost: more complicated computations or a more difficult (or
even impossible) derivation. You might not be able to solve the equations
to update individual variational parameters or the calculations might
be more difficult. The more dependencies in the variational distribution,
the more terms you must consider. When there are latent variables
for every token in many documents, the number of dependencies can
explode.

Often a fully-factored variational distribution is a good choice. After
implementing a fully-factorized variational distribution, a researcher
should carefully monitor the objective function (Equation 9.4). Ideally
it will quickly increase and reach a stable (local) optimum (Figure 9.1,
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Iteration

`

Iteration

`

Iteration Iteration

p(w | z, φ, θ) p(w | z, φ, θ)

Effective Ineffective
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Gibbs

Figure 9.1: Monitoring the objective function is an important component of diag-
nosing whether inference is working correctly. Correct variational inference should
increase monotonically while Gibbs sampling can decrease slightly. However, in both
cases, the objective function should increase dramatically over time. If the objective
is flat, it may mean that you may need to reconsider design choices in your inference
algorithm. Scales for variational inference and Gibbs sampling are not comparable.
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left). However, if it does not (Figure 9.1, right), then it could be that
there are coupled variables that are not well served by the variational
distribution.

Coupled variables need to change together, and a fully-factorized
distribution forces them to change in sequence. For example, let’s say
that x = 0 and y = 0 and that they are highly correlated, but a
higher probability setting is for x = 1 and y = 1. Coordinate ascent
optimization with a fully-factorized variational distribuion will want to
change x or y individually, when in fact they must move together to
maintain high performance.

To fully model the interaction between the two variables, we can
model x and y jointly in the variational distribution. Instead of indepen-
dent distributions q(x)q(y), the variational distribution becomes q(x, y)
(as appropriate those variables’ formulation).

9.2.3 Gibbs Sampling

Gibbs sampling (as discussed at a high level in Chapter 1) finds latent
variables by randomly sampling an assignment of each random variable
conditioned on all of the other random variables.

Thus, after creating your model, you need to compute the conditional
distribution of each random variable conditioned on all of the others.
For example, the conditional distribution of word n’s topic assignment
variable zd,n (highlighted in bold) is

p(zd,n | zd,1 . . . zd,n−1, zd,n+1, . . . zd,Nd
, θ, φ) =

p(zd,1 . . . zd,n−1, zd,n, zd,n+1, . . . zd,Nd
, θ, φ)

p(zd,1 . . . zd,n−1, zd,n+1, . . . zd,Nd
, θ, φ) , (9.5)

which simplifies into Equation 1.4.
Deriving conditional distributions is often simpler than expanding

variational expectations. Hardisty et al. [2010] provide a step-by-step
tutorial on deriving Gibbs sampling for probabilistic models.

Marginalization and Joint Variables Just like there is some art in
deciding which variables to merge into a joint distribution for variational
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inference, in Gibbs sampling, you need to decide which variables to
sample jointly and which variables to marginalize.

Jointly sampling variables solves the same problem as merging vari-
ables into the same variational distribution above. Instead of sampling
x conditioned on all other variables and then sampling y, x and y are
sampled at the same time from a distribution that conditions x and y
on all of the other variables.

9.3 Debugging and Validation

Now that you have implemented inference for your topic model, how
do you know if it’s working as intended?

9.3.1 Synthetic Data

Because most topic models have a generative story, we can generate
data. This means running the probabilistic story of the model forward
to generate data. For example, for lda, sample a topic distribution for
each document and a type distribution for each topic from Dirichlet
distribution. Such a dataset is often called a synthetic dataset.

If you create a dataset this way, the latent variables are no longer
latent. You know exactly what they are. If you run inference on these
data you should be able to recreate the unmasked latent variables you
generated. If your inference algorithm does not come close, there is
likely a problem with your inference procedure.

However, topic models can be tricky. Topic 7 in your synthetic data
may correspond to Topic 4 that you discovered in inference. That is not
a problem as the topic identifiers are arbitrary; thus, you will have to
match topics greedily or measure some other statistic to compare your
inferred variables with the true synthetic data.

Synthetic data is most valuable when it is close to the distribution
of real data. Toy problems can be a good sanity check, but provide at
best a loose upper bound on our ability to model data that we care
about. Using semi-synthetic data can therefore be a good compromise.
In this setting, you train a model from real data, and then generate new
documents from that model. The resulting semi-synthetic corpus has
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many of the correct properties of natural documents, such as vocabulary
size and sparsity, but is guaranteed to actually fit the proposed model.

9.3.2 Updates

For both variational inference and Gibbs sampling, the most important
step is updating the distribution for individual random variables. Thus,
you will want to take as many steps to ensure their accuracy as possible.

For variational inference, each update of the variational parameters
increases the objective function (Equation 9.4). Thus, you can check
after every update of a variable’s variational distribution whether that
objective has increased or not. While not every update will exactly
increase the objective (due to numerical precision errors or initialization),
no update should dramatically decrease the objective. If one does, you
likely have a bug.

Gibbs sampling is stochastic, so it is more difficult to debug. But for
both variational inference and Gibbs sampling, you should write unit
tests (worked out with pen and paper) to verify that your updates reach
the right answer given the same inputs. Gibbs sampling’s randomness
can be handled in a unit testing environment using stubs that replace
the random number generator (these stubs can also be useful when you
later want to generate results with different random seeds, as discussed
below).

9.3.3 Baselines and Metrics

Often you will want to compare your model to another model that
either has a similar structure or application. This comparison can help
you during development.

For example, you may want to extend supervised lda in some
way (Chapter 7). Fortunately, slda is a well-defined model and has
established performance on widely available datasets.

Thus, a reasonable development strategy would be to create a series
of models that take you from slda to your final model (e.g., adding one
latent variable at a time), at each time comparing how well your model
does against slda. These comparisons do not just aid development;
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they will also help document how important each of the changes to the
model are.

Comparisons between topic models can be difficult because imple-
mentations and algorithms can vary so much. It is often unclear, for
example, whether an observed difference is due to one model being
better than another or to comparing Gibbs sampling to variational
inference. An excellent way to test a new algorithm for a complicated
model is to find ways to implement simpler models in the same code. For
example, you can emulate an lda model using an Author-Topic model
[Rosen-Zvi et al., 2004] by assigning each document its own “author”.

A standard metric to report for topic models is their perplexity or
held-out likelihood. This value is the probability of held-out data given
the settings of the model. Wallach et al. [2009b] detail a method for
estimating perplexity in topic models given a Gibbs sampling algorithm
(which is beyond the scope of this survey).

However, perplexity is often not what you care about for your
application of topic models. For example, if you developing a variant
of slda, you likely care about prediction accuracy. Thus, as you are
slowly building out your slda variant, you should report prediction
performance as well.

9.4 Communicating Your Model

After building a model, implementing inference, and applying it to data,
the next exciting step is to tell the world. While one must obviously
provide motivation for a new model and describe the technical details,
one component of communicating a model that is often overlooked is
the interplay between these two facets of describing a model.

The application should not just stand alongside the modeling goal;
it should be tightly integrated in the probabilistic story. Rather than
listing the steps of the generative process, the generative process should
be described with evocative variable names. For example, if your model
attempts to capture political polarization, then you may call a discrete
variable “polarization π” to make it clear where in the model this aspect
will be modeled.
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However, naming a variable does not make it so. You will also need
to provide qualitative evidence that will convince a skeptical reader that
your model is doing what you promised. This is possible by providing
overviews of your data at either the micro or macro level.

At the macro level, you can show that your model is doing reasonable
things by showing the distribution over words given topics (or whatever
the analogous component is). However, you should avoid the temptation
to cherry-pick topics. It is better to select topics randomly or—if you
do cherry-pick—to also select “bad” topics that show failure modes of
your model.

While macro level cues can show the model finds good summaries,
you should also show individual documents and how they interact with
data. For example, if your model attempts to show political polarization,
you can show polarized (or not) documents and show how the latent
variables in your models correctly capture those aspects of the documents
(or not; as with topics, show failure modes as well).

In addition, you will also have quantitative metrics for your task:
accuracy of prediction, precision at rankK, or translation quality (Chap-
ter 8). When reporting quantitative results, remember the probabilistic
foundations of topic models: you are not learning one answer. Regardless
of the inference, you are learning a distribution over latent variables
given a dataset.

Thus, convey the inherent uncertainty in inference. You should run
inference multiple times with different random seeds (Gibbs sampling)
or random initializations (variational inference). Quantitative results
with error bars enables credible comparisons to other models: not only
do you have a higher score but you show that your higher score is not
just the result of chance.

9.5 Summary

This chapter discusses the process for creating a new topic model from
scratch and how to communicate this process to the world. While
superficially different than our application-focused chapters, most of the
papers were created through this process of model-building, inference,
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and evaluation. Thus, this chapter helps understand the process for
building the models discussed through these chapters.

In the next chapter, we contemplate the future of topic models and
how topic models might fit into the broader computer and information
science research agenda.



10
Conclusion

While we have attempted to cover a variety of the applications of
topic models to help individuals navigate large text datasets, no finite
survey could enumerate all of the applications of topic models in text,
which have been applied to part of speech tagging [Toutanova and
Johnson, 2008], word sense induction [Brody and Lapata, 2009], and
entity disambiguation [Kataria et al., 2011]. It goes without saying that
we have also omitted many other applications outside text, such as
biology [Pritchard et al., 2000], understanding source code [Maskeri
et al., 2008], music analysis [Hu and Saul, 2009], and many more.

10.1 Coping with Information Overload

A challenge in topic modeling is how to make inference efficient enough
to both scale to large datasets and to provide low-latency interactive
experiences to help provide support to a user in the loop. There are
three broad strategies for processing documents more quickly.

The first is through decreasing the average number of times a
computer needs to look at a document to learn a topic model; i.e.,
to improve throughput. Online algorithms [Hoffman et al., 2010] only
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look at a document once, update the topics, and then move on to the
next document. This is often much faster than batch approaches which
require many passes over the same set of documents. Another option is
to distribute computation across many machines [Zhai et al., 2012].

A complementary approach is to reduce the time a computer spends
on any particular document: improving efficiency. This is possible by
improving how long it takes to sample document assignments [Yao et al.,
2009, Li et al., 2014] or compute variational parameters [Mimno et al.,
2012].

The final approach to improve the efficiency of probabilistic algo-
rithms for topic models is to rethink the inference process entirely.
Novel approaches view topic model inference as a factorization of a
co-occurence matrix [Arora et al., 2013] or as a spectral decompo-
sition [Anandkumar et al., 2012]. These approaches often are much
faster than traditional approaches as they use word types—rather than
documents—as the central unit of computation.

10.2 Deeper Representations

Part of the benefit of topic models is that the topic distribution of a
document (θ) serves as a low-dimensional representation of what the
document means. This numerical vector is useful for finding similar
documents (Chapter 2), displaying documents to a user (Chapter 3), or
connecting documents across languages (Chapter 8).

Increasingly, vector-based, distributed representations have been
useful “all the way down”. Vector-based representations of words and
phrases can improve next word prediction [Bengio et al., 2003], sentiment
analysis [Socher et al., 2012], and translation [Devlin et al., 2014]. And
this is not just for text—representation learning has taken hold of
speech, vision, and machine learning generally.

The effect of representation learning on topic modeling remains
unclear as we go to press in 2017. We see several ways that representation
learning and topic modeling could benefit each other in the future.
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Evaluation Evaluation methods from topic models (Chapter 3.4) have
made their way into representation learning [Schnabel et al., 2015,
Iyyer et al., 2016], which suggests that some of the lessons learned in
making topic models interpretable could also be applied in representation
learning. This mollifies some critics of representation learning who argue
that the results are often uninterpretable or deceptive [Szegedy et al.,
2014].

Synthesis Topic modeling is also blending with more expressive latent
representation models [Ranganath et al., 2015]. Topic models could help
representation learning solve some of its difficulty summarizing larger
segments of text. Paragraphs and sentences are difficult to model as a
single vector, and techniques more sophisticated than simple averaging
do not seem worth the hassle [Iyyer et al., 2015].

Parallel Evolution Another possible path is less intertwined: topic
models and deep-learning representation learning solve different prob-
lems and are not directly competitive. Topic models offer advantages of
speed and interpretability, while representation learning can do better
for prediction-based tasks. Topic models have never been ideal, for
example, in inducing features for text classification: it is almost always
better to use word-count features. If interpretability and recognizability
is not a fundamental goal of your analysis, you are probably better
off using something else. However, in cases where interpretability and
recognition are the main and final goals of analysis, deep learning meth-
ods offer little because their very advantage —greater representational
complexity—is also their weakness. Both approaches should be tools
that many text miners have in their toolkit, with specific circumstances
for using either.

10.3 Automatic Text Analysis for the People

However, in our view, the primary research challenge of topic models
is not to make these models and their inference more complicated but
rather to make them more accessible. As we have described, topic models
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can help scholars and ordinary people navigate large text collections.
However, using topic models still requires extensive data and com-

puter skills. Our job as information scientists is not complete until
these tools (or suitable alternatives) are available to everyone who needs
them.

This goal requires making the tools more usable. The corpus pre-
processing and vocabulary curation required of topic models is not
straightforward: should we remove non-English documents, what should
we consider a document, how should we use metadata? Nor are the
modeling choices needed to make sense of the data trivial: how many
topics should we use, which of the many possible models should we use,
and what inference technique gives us the best tradeoff between speed
and accuracy? Existing topic models do a poor job of communicating
what options are available to a user and what consequences these choices
have.

However, even if the process of creating a topic model becomes
intuitive, the output must also be interpretable. Distributions over
words are the language that these models use to create representations
of document collections, but it is not how users think about topics: they
would much rather have phrases [Mei et al., 2007b], sentences [Smith
et al., 2016], or pictures [Lau et al., 2014]. However, providing these
representations is non-trivial and requires a deeper understanding of a
corpus than today’s topic models can manage.

Finally, topic models need a more systematic investigation of how
they can assist users’ workflow for typical information seeking, orga-
nization, and management tasks. While the applications covered in
this survey show examples of how people can use topic models from
applications from history to political science, how topic models can
augment or replace existing workflows lacks the same attention given
to—for example—search engines.

10.4 Coda

We hope that you have enjoyed our survey of topic models’ applications.
For further information, we would encourage the reader to investigate
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the topic modeling bibliography,1 join the topic modeling mailing list,2
or the book’s associated webpage.

1https://mimno.infosci.cornell.edu/topics.html
2https://lists.cs.princeton.edu/mailman/listinfo/topic-models

https://mimno.infosci.cornell.edu/topics.html
https://lists.cs.princeton.edu/mailman/listinfo/topic-models
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