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Abstract

Rapidly increasing volumes of news, tweets, and blogs are proving to be ex-
tremely valuable resources in helping anticipate, detect, and forecast significant
societal events. In this paper, we focus on the problem of forecasting rare disease
outbreaks and demonstrate how spatio-temporal topic models over health-related
newspaper articles can successfully be used to forecast outbreaks. More precisely,
we present a novel framework that integrates topic models with one-class SVMs,
so that modeling the underlying topic evolution and forecasting its prominence
can be used as a surrogate for making near-term predictions of disease outbreaks.
We demonstrate the effectiveness of our proposed technique using incidence data
for Hantavirus in multiple countries of Latin America.

1 Introduction

There has been a growing interest in developing statistical models for detecting infectious diseases
as they arise, in a sufficiently timely fashion to enable effective control measures to be taken. Most
of the early approaches targeted specific diseases and relied on highly specialized data, including
medical records or environmental time series [11,/10]]. Recently, however, there has been a growing
interest in monitoring disease outbreaks using publicly available data on the Web, including news
articles [12, [7]], blogs [3], search engine logs [6]] and micro-blogging services, such as Twitter [4]].
Due to their volume, ease of availability, and ’citizen participation’, such ‘open source indicators’
have been shown to be quite effective at monitoring disease emergence and progression.

While effective at detecting outbreaks of common diseases, such as influenza, the above techniques
have significant limitations at predicting outbreaks of rare, yet deadly, diseases, such as Hantavirus.
Here we propose a novel framework for spatially targeted prediction of rare disease outbreaks. The
proposed framework leverages the temporal topic models formalism and auto-regression techniques
proposed by Matsubara et al. [8] as well as one-class SVMs [9]]. More precisely we show how the
temporal topic models over archival and ongoing news articlces can enable detection of emerging
disease-related topics for a collection of predefined locations. Furthermore, we show how one-
class SVMs can be used on the output topic distribution to detect anomalous topic distributions that
constitute early indicators of the onset of an outbreak. We evaluate and demonstrate the effectiveness
of the proposed framework for forecasting Hantavirus outbreaks in Latin America.

2  Framework Overview

Temporal Topic Models for Newspaper Articles. We assume as input a collection of time-stamped
health related news articles over a time period 7', which is assumed to be discretized into fixed time
intervals (t1,to,...,ty) of length [ (typically one week). Each news article is associated with (i)
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Figure 1: Illustration of the tensor decomposition used to define the temporal topic model.

a disease incidence location, (ii) a time stamp, and (iii) a news provider, which we will refer to
as the source. Each article can be viewed as a collection of words, and hence, our input can be
viewed as a sequence of words from different sources. It is convenient to treat the given sequence
as a four dimensional tensor, i.e., X € NIWIXISIXILIXN “where W denotes the set of the words
under consideration, S is the set of the news article sources, and L is the set containing the locations
of interest. As stated earlier, our time granularity is one week, defined as the 7-day period from
Sunday to Saturday referred to as an epidemiological week, or epi week for short. For example, a
tuple (“hanta”,(“Los Lagos”, “Chile”), “www.biobiochile.cl”, ‘28’: 2) means that the count of news
articles mentioning the word “hanta” is 2 in the state of Los Lagos in Chile over the Epi week 28.

Each entry in X is assumed to be generated from a latent topic. The hidden topics can be modeled
in terms of the four dimensions mentioned above, namely, “word”, “source”, “location” and “time”.
We consider decomposing the input with respect to source since we assume that different sources
focus on different diseases. Assuming K latent topics, one can decompose tensor X" into four matri-
ces W(|[W| x K), L(K x |L|), S(K x |S]), and, C(K x N) with non-negative entries (see Figure
[I). Rows in L, C and S, associated with a topic € K, correspond to categorical distributions
describing the probability of observing each word, location, epi-week or source given r while rows
in W correspond to probabilities of observing each topic r given a word w . By analyzing these
distributions, we can identify which of the K topics are related to rare disease topics of interest (i.e.,
rare disease topics).

We estimate the probability of a rare disease topic becoming prominent for a given location [ at a
future time interval ¢, denoted by P.S, as:

PS, =Pr(r|l,t) =Y Pr(rls,,t) Pr(s|l,t) = > _ > [Pr(rlw,s,1,t) Pr(w|s, 1, 1) Pr(s|l, ) (1)

seS seSweWw

where s and w represent a source and a word respectively. In Equation , Pr(s|l,t) corresponds to
the probability that given a location [ and a time interval ¢ an article will be reported by source s; this
corresponds to the coverage of source s for the location [ at time ¢. Finally, Pr(r|s, [, t) corresponds
to the probability that topic r will be covered by s for location [ at time ¢.

Given a word w, the topic r is independent of s, [, and ¢, thus, Pr(r|w, s,l,t) = Pr(r|w). By the

chain rule we also have that Pr(w|s,l,t) = %. The term Pr(w, s,1,¢) can be estimated

using the count of news articles corresponding to the tuple < w, s,{,t > denoted by x, s+ We

have that Pr(w, s,1,t) = 517“ Notice that x,, s, corresponds to a future time interval and
hence needs to be estimated. We estimate ., 1 ¢ as
K
Lw,s,l,t X Tw Z Ww,'r . L'r,l . Cr,t . Sr,s (2)
r=1

where W, ., Ly, and S, s can be retrieved by the corresponding matrices. However C,.; corre-
sponds to a future time intérval and needs to be estimated. We use matrix C to forecast the values

Crawithr € {1,2,...,K}. We use an autoregressive model over the values of topic r for the n
previous time intervals, "denoted by Crt—1,Crt—2,...,Ch+—n.We have:
Cr,t =ai - Cr,t—l +az - Cr,t—Q +- tan - Cr,t—n (3)



where aj,as,.....,a, are the regression coefficients. Combining the equations above, we have

Pr(r|l,t) = Z Z W The term P(l,t) is constant for a given location ! and future

timestamp t, and hence, Pr(r|l,t) o ZZPr( |w) - Pr(w, s,1,t) o ZZWw7£’L"”;t To de-

rive a proper probablhty distribution over rare disease topics we normalize the term PS = Pr(r|l,t)
over all topics for a given location and timestamp.

Detecting Anomalies with One-Class SVMs. To predict the incidence of a rare disease outbreak
for a location [ at time ¢, we reason about the predicted prominence probabilities of rare disease
topics, detecting if the probabilities indicate an anomalous point, i.e., the incidence of a disease
outbreak. To detect anomalous points we use one-class SVMs [9] (OCSVM). A OCSVM maps input
data X into a high dimensional feature space H via a kernel ® : X — H and finds the maximal
margin hyperplane which best separates the training data from the origin. The classification rule
corresponds to f(x) = sign(w®(x) — b), where w is a weight vector and b is a bias term. We use
this classification rule to detect if a new point « is an anomalous point (i.e., f(z) < 0) or not. The
sets of training examples for each of these OCSVMs is comprised by the predicted rare disease topic
distributions for each location over the time intervals in the time window 7.

Recall that our goal is to detect the incidence of a particular disease outbreak for a specific location
in L. Operationally, we train a separate OCSVM for each location and disease pair and forecast
outbreaks on a weekly basis. This approach thus predicts if a disease outbreak will happen and
where it will happen (since we are training and forecasting for each location). For the when since
we are predicting for an epi week we adopt a standard relative date within the epi week to be the
date at which the rare disease incidence will occur, and tune it using cross-validation.

3 Experimental Evaluation

Datasets. Our corpus of public health-related news articles is drawn from HealthMap [5]
(http://healthmap.org), a prominent online source of news articles and tweets for disease outbreak
monitoring and real-time surveillance of emerging public health threats. In this paper, we focus on
HealthMap articles from Latin America. Traditional IR pre-processing such as stopword removal
and term frequency modeling is performed over a fixed vocabulary of words. The dictionary contains
words that are either commonly associated with diseases (e.g., “contagious”) or words associated
with a specific disease (e.g., “rodents”,”hanta” for Hantavirus). The latter are also used to identify
the topics that are most probable to correspond to rare disease topics. When predicting for an epi-
week we use historical (weekly) data from June 2012 up to the previous week to construct the tensor
decomposition and train the OCSVM. We evaluate the performance of our approaches from January
2013 to May 2013. The size of the input tensor varies over time, as new articles are added every
epiweek. The number of words in the tensor ranges from 20908 to 45163, the number of locations
from 74 to 144 and the number of HealthMap data sources from 381 to 798.

GSR. We also make use of a gold standard report (GSR) which gives ground truth determinations
of whether a disease incidence (Hantavirus) happened in a given country. The GSR is determined
by analysts (not co-authors of this paper) poring over multiple Latin American or international news
sources and studying bulletins issued by health reporting organizations such as ProMED [1]. In
practice, outbreak alerts are useful only when there has not been an outbreak in the near past. The
analysts adopt a 6-month rule wherein the GSR data does not include rare disease incidences in
locations for which there has been an earlier outbreak reported within the past six months.

Metrics. We adopt four key measures of performance. Given our predictions, we compute the recall
and precision at a country level, grouping together predictions for locations in the same country.
We also compute an average warning quality for each country. Each prediction for a location in
the country under consideration is assigned a quality score ) = %(1 + Qoc + Gdate)> Where ajoc
and agq¢e denote the location and date accuracy of the prediction. The quality score takes values
between 0 and 4. Finally, we consider the lead time of our predictions, which is calculated as the
time between the date of alerting and the actual date of reporting of the outbreak (not the incidence
date of the outbreak).

BRM. We also compare the performance of our framework against a base rate model (BRM). This
model assumes a fixed rate for the occurrence of rare disease outbreaks for each country and for each
month. To determine this rate, the model extracts the average frequency of outbreak occurrences
reported over a past time window of four months. BRM reports disease outbreaks for that country at



Table 1: Performance results for spatio-temporal topic models with OCSVMs and BRM.

Base Rate Model Spatio-temporal topic models + OCSVMs

Month | Country Qual. | Rec. | Prec. | Qual. | Lead Time | Rec. Prec.
Jan Chile 2.83 | 0.17 | 0.50 | 2.92 7.5 0.67 1.0
’ Overall 2.83 | 0.17 | 0.50 | 2.92 7.5 0.67 0.57
Feb Chile 2.58 | 0.68 | 0.45 | 3.36 10.0 0.5 0.5
’ Overall 258 | 0.68 | 045 | 3.36 10.0 0.5 0.4
Chile 254 | 0.8 0.8 2.54 13 0.5 0.5

Mar Argentina - 0 - 2.54 1.0 1.0 1.0
’ Uruguay - 0 - 2.92 5.0 1.0 1.0
Overall 254 1032 ] 08 2.66 6.33 0.75 0.75

Chile 2.59 | 0.7 0.7 2.73 6.5 0.67 0.67

Apr. Argentina - 0 - 2.92 3.00 1.0 0.25
Overall 259 [ 053] 0.7 2.79 5.33 0.75 0.42

Chile 2.63 | 0.86 | 0.57 | 3.015 7.5 1.0 0.67

May | Argentina | 2.48 | 0.24 | 0.72 | 3.015 7.5 0.67 0.67
Overall 2.55 | 048 | 0.61 | 3.015 6.0 0.8 0.66

a frequency equal to the extracted rate. Alerting dates are assigned to the beginning of each month
while events dates are assigned uniformly at random to a day within the corresponding month. (Thus
lead time is not a meaningful criterion to evaluate the BRM.) The performance of BRM is enhanced
by taking the average performance over 25 independent runs.

Mapping events to alerts. Since there could be multiple events (and/or alerts) in a given month, a
strategy is necessary to map events to alerts. We conduct a maximum bipartite matching between
events and alerts where i) an edge exists if the alert was issued prior to the reporting date of the
event, ii) the weight on the edge denotes the putative quality score.

Results. We focus on three countries, i.e., Chile, Argentina, and Uruguay, for which cases of han-
tavirus outbreaks were reported from January to May 2013. We perform the tensor decomposition
described in Section 2] using 12 disease topics. We run our OCSVM model - using a linear kernel
for the SVMs corresponding to Chile and Argentina and a radial basis function (rbf) kernel for the
SVMs corresponding to Uruguay - on the predicted topic probabilities for all available locations in
these three countries. The results are shown in Table [l As shown our approach can effectively
detect outbreaks with an average lead-time of 6.4 days. Moreover, our approach outperforms BRM
in all cases in terms of quality, meaning that our approach is better at predicting diseases for par-
ticular locations. Notice that by definition the BRM model performs poorly when the hantavirus
season rises (or begins) in a particular country. If we look at the recall values carefully, the recall
value for BRM is very low (0.17) in January since in Chile the hantavirus season picks up in January
with respect to December because in December there are no incidents while in January there are 6
incidents. In February, the recall value for BRM in Chile increases to 0.65 because in February the
hantavirus season falls down in Chile with respect to January. Since the spatio-temporal topic model
is trained on the news articles data (more ground truth), it can adapt well to changes in seasonality
as evident from its recall values. Finally, it was capable of detecting outbreaks in Argentina and
Uruguay during March and April without any incident being reported in the GSR for the past few
months in these 2 countries; BRM fails as it is dependent on the GSR data.
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