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Abstract

We introduce the author-topic model, a gen-
erative model for documents that extends La-
tent Dirichlet Allocation (LDA; Blei, Ng, &
Jordan, 2003) to include authorship informa-
tion. Each author is associated with a multi-
nomial distribution over topics and each topic
is associated with a multinomial distribution
over words. A document with multiple au-
thors is modeled as a distribution over topics
that is a mixture of the distributions associ-
ated with the authors. We apply the model
to a collection of 1,700 NIPS conference pa-
pers and 160,000 CiteSeer abstracts. Exact
inference is intractable for these datasets and
we use Gibbs sampling to estimate the topic
and author distributions. We compare the
performance with two other generative mod-
els for documents, which are special cases of
the author-topic model: LDA (a topic model)
and a simple author model in which each au-
thor is associated with a distribution over
words rather than a distribution over top-
ics. We show topics recovered by the author-
topic model, and demonstrate applications
to computing similarity between authors and
entropy of author output.

1 Introduction

Characterizing the content of documents is a standard
problem addressed in information retrieval, statistical
natural language processing, and machine learning. A
representation of document content can be used to or-
ganize, classify, or search a collection of documents.
Recently, generative models for documents have begun
to explore topic-based content representations, model-
ing each document as a mixture of probabilistic top-
ics (e.g., Blei, Ng, & Jordan, 2003; Hofmann, 1999).

Here, we consider how these approaches can be used to
address another fundamental problem raised by large
document collections: modeling the interests of au-
thors.

By modeling the interests of authors, we can answer
a range of important queries about the content of
document collections. With an appropriate author
model, we can establish which subjects an author
writes about, which authors are likely to have writ-
ten documents similar to an observed document, and
which authors produce similar work. However, re-
search on author modeling has tended to focus on the
problem of authorship attribution – who wrote which
document – for which discriminative models based on
relatively superficial features are often sufficient. For
example, the “stylometric” approach (e.g., Holmes &
Forsyth, 1995) finds stylistic features (e.g., frequency
of certain stop words, sentence lengths, diversity of an
author’s vocabulary) that discriminate between differ-
ent authors.

In this paper we describe a generative model for doc-
ument collections, the author-topic model, that simul-
taneously models the content of documents and the
interests of authors. This generative model represents
each document with a mixture of topics, as in state-
of-the-art approaches like Latent Dirichlet Allocation
(Blei et al., 2003), and extends these approaches to
author modeling by allowing the mixture weights for
different topics to be determined by the authors of the
document. By learning the parameters of the model,
we obtain the set of topics that appear in a corpus
and their relevance to different documents, as well as
identifying which topics are used by which authors.

The paper is organized as follows. In Section 2, we
discuss generative models for documents using authors
and topics, and introduce the author-topic model. We
devote Section 3 to describing the Gibbs sampler used
for inferring the model parameters, and in Section 4
we present the results of applying this algorithm to
two collections of computer science documents—NIPS



conference papers and abstracts from the CiteSeer
database. We conclude and discuss further research
directions in Section 5.

2 Generative models for documents

We will describe three generative models for docu-
ments: one that models documents as a mixture of
topics (Blei et al., 2003), one that models authors with
distributions over words, and one that models both
authors and documents using topics. All three models
use the same notation. A document d is a vector of Nd

words, wd, where each wid is chosen from a vocabulary
of size V , and a vector of Ad authors ad, chosen from a
set of authors of size A. A collection of D documents
is defined by D = {(w1,a1), . . . , (wD,aD)}.

2.1 Modeling documents with topics

A number of recent approaches to modeling document
content are based upon the idea that the probabil-
ity distribution over words in a document can be ex-
pressed as a mixture of topics, where each topic is
a probability distribution over words (e.g., Blei, et
al., 2003; Hofmann, 1999). We will describe one such
model – Latent Dirichlet Allocation (LDA; Blei et al.,
2003).1 In LDA, the generation of a document col-
lection is modeled as a three step process. First, for
each document, a distribution over topics is sampled
from a Dirichlet distribution. Second, for each word
in the document, a single topic is chosen according to
this distribution. Finally, each word is sampled from
a multinomial distribution over words specific to the
sampled topic.

This generative process corresponds to the hierarchical
Bayesian model shown (using plate notation) in Fig-
ure 1(a). In this model, φ denotes the matrix of topic
distributions, with a multinomial distribution over V
vocabulary items for each of T topics being drawn in-
dependently from a symmetric Dirichlet(β) prior. θ
is the matrix of document-specific mixture weights for
these T topics, each being drawn independently from
a symmetric Dirichlet(α) prior. For each word, z de-
notes the topic responsible for generating that word,
drawn from the θ distribution for that document, and
w is the word itself, drawn from the topic distribution
φ corresponding to z. Estimating φ and θ provides
information about the topics that participate in a cor-
pus and the weights of those topics in each document
respectively. A variety of algorithms have been used

1The model we describe is actually the smoothed LDA
model (Blei et al., 2003) with symmetric Dirichlet priors
(Griffiths & Steyvers, 2004) as this is closest to the author-
topic model.

to estimate these parameters, including variational in-
ference (Blei et al., 2003), expectation propagation
(Minka & Lafferty, 2002), and Gibbs sampling (Grif-
fiths & Steyvers, 2004). However, this topic model
provides no explicit information about the interests of
authors: while it is informative about the content of
documents, authors may produce several documents –
often with co-authors – and it is consequently unclear
how the topics used in these documents might be used
to describe the interests of the authors.

2.2 Modeling authors with words

Topic models illustrate how documents can be mod-
eled as mixtures of probability distributions. This sug-
gests a simple method for modeling the interests of au-
thors. Assume that a group of authors, ad, decide to
write the document d. For each word in the document
an author is chosen uniformly at random, and a word
is chosen from a probability distribution over words
that is specific to that author.

This model is similar to a mixture model proposed
by McCallum (1999) and is equivalent to a variant
of LDA in which the mixture weights for the differ-
ent topics are fixed. The underlying graphical model
is shown in Figure 1(b). x indicates the author of a
given word, chosen uniformly from the set of authors
ad. Each author is associated with a probability dis-
tribution over words φ, generated from a symmetric
Dirichlet(β) prior. Estimating φ provides information
about the interests of authors, and can be used to an-
swer queries about author similarity and authors who
write on subjects similar to an observed document.
However, this author model does not provide any in-
formation about document content that goes beyond
the words that appear in the document and the au-
thors of the document.

2.3 The author-topic model

The author-topic model draws upon the strengths of
the two models defined above, using a topic-based rep-
resentation to model both the content of documents
and the interests of authors. As in the author model,
a group of authors, ad, decide to write the document
d. For each word in the document an author is chosen
uniformly at random. Then, as in the topic model, a
topic is chosen from a distribution over topics specific
to that author, and the word is generated from the
chosen topic.

The graphical model corresponding to this process is
shown in Figure 1(c). As in the author model, x indi-
cates the author responsible for a given word, chosen
from ad. Each author is associated with a distribution
over topics, θ, chosen from a symmetric Dirichlet(α)
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Figure 1: Generative models for documents. (a) Latent Dirichlet Allocation (LDA; Blei et al., 2003), a topic
model. (b) An author model. (c) The author-topic model.

prior. The mixture weights corresponding to the cho-
sen author are used to select a topic z, and a word is
generated according to the distribution φ correspond-
ing to that topic, drawn from a symmetric Dirichlet(β)
prior.

The author-topic model subsumes the two models de-
scribed above as special cases: topic models like LDA
correspond to the case where each document has one
unique author, and the author model corresponds to
the case where each author has one unique topic. By
estimating the parameters φ and θ, we obtain informa-
tion about which topics authors typically write about,
as well as a representation of the content of each docu-
ment in terms of these topics. In the remainder of the
paper, we will describe a simple algorithm for estimat-
ing these parameters, compare these different models,
and illustrate how the results produced by the author-
topic model can be used to answer questions about
which which authors work on similar topics.

3 Gibbs sampling algorithms

A variety of algorithms have been used to estimate the
parameters of topic models, from basic expectation-
maximization (EM; Hofmann, 1999), to approximate
inference methods like variational EM (Blei et al.,
2003), expectation propagation (Minka & Lafferty,
2002), and Gibbs sampling (Griffiths & Steyvers,
2004). Generic EM algorithms tend to face problems
with local maxima in these models (Blei et al., 2003),
suggesting a move to approximate methods in which
some of the parameters—such as φ and θ—can be in-
tegrated out rather than explicitly estimated. In this
paper, we will use Gibbs sampling, as it provides a sim-
ple method for obtaining parameter estimates under
Dirichlet priors and allows combination of estimates

from several local maxima of the posterior distribu-
tion.

The LDA model has two sets of unknown parameters –
the D document distributions θ, and the T topic distri-
butions φ – as well as the latent variables correspond-
ing to the assignments of individual words to topics z.
By applying Gibbs sampling (see Gilks, Richardson, &
Spiegelhalter, 1996), we construct a Markov chain that
converges to the posterior distribution on z and then
use the results to infer θ and φ (Griffiths & Steyvers,
2004). The transition between successive states of the
Markov chain results from repeatedly drawing z from
its distribution conditioned on all other variables, sum-
ming out θ and φ using standard Dirichlet integrals:

P (zi = j|wi = m, z−i,w−i) ∝

CWT
mj + β

∑

m′ CWT
m′j + V β

CDT
dj + α

∑

j′ CDT
dj′ + Tα

(1)

where zi = j represents the assignments of the ith
word in a document to topic j , wi = m represents
the observation that the ith word is the mth word in
the lexicon, and z−i represents all topic assignments
not including the ith word. Furthermore, CWT

mj is the
number of times word m is assigned to topic j, not
including the current instance, and CDT

dj is the num-
ber of times topic j has occurred in document d, not
including the current instance. For any sample from
this Markov chain, being an assignment of every word
to a topic, we can estimate φ and θ using

φmj =
CWT

mj + β
∑

m′ CWT
m′j + V β

(2)

θdj =
CDT

dj + α
∑

j′ CDT
dj′ + Tα

(3)



where φmj is the probability of using word m in topic
j, and θdj is the probability of topic j in document d.
These values correspond to the predictive distributions
over new words w and new topics z conditioned on w

and z.

An analogous approach can be used to derive a Gibbs
sampler for the author model. Specifically, we have

P (xi = k|wi = m,x−i,w−i,ad) ∝
CWA

mk + β
∑

m′ CWA
m′k + V β

where xi = k represents the assignments of the ith
word in a document to author k and CWA

mk is the num-
ber of times word m is assigned to author k. An esti-
mate of φ can be obtained via

φmk =
CWA

mk + β
∑

m′ CWA
m′k + V β

similar to Equation 2.

In the author-topic model, we have two sets of latent
variables: z and x. We draw each (zi, xi) pair as a
block, conditioned on all other variables:

P (zi = j, xi = k|wi = m, z−i,x−i,w−i,ad) ∝

CWT
mj + β

∑

m′ CWT
m′j + V β

CAT
kj + α

∑

j′ CAT
kj′ + Tα

(4)

where zi = j and xi = k represent the assignments of
the ith word in a document to topic j and author k re-
spectively, wi = m represents the observation that the
ith word is the mth word in the lexicon, and z−i,x−i

represent all topic and author assignments not includ-
ing the ith word, and CAT

kj is the number of times
author k is assigned to topic j, not including the cur-
rent instance. Equation 4 is the conditional probabil-
ity derived by marginalizing out the random variables
φ (the probability of a word given a topic) and θ (the
probability of a topic given an author). These random
variables are estimated from samples via

φmj =
CWT

mj + β
∑

m′ CWT
m′j + V β

(5)

θkj =
CAT

kj + α
∑

j′ CAT
kj′ + Tα

(6)

In the examples considered here, we do not estimate
the hyperparameters α and β—instead the smoothing
parameters are fixed at 50/T and 0.01 respectively.

Each of these algorithms requires tracking only small
amounts of information from a corpus. For example,
in the author-topic model, the algorithm only needs
to keep track of a V × T (word by topic) count ma-
trix, and an A × T (author by topic) count matrix,
both of which can be represented efficiently in sparse

format. We start the algorithm by assigning words to
random topics and authors (from the set of authors
on the document). Each iteration of the algorithm in-
volves applying Equation 4 to every word token in the
document collection, which leads to a time complex-
ity that is of order of the total number of word tokens
in the training data set multiplied by the number of
topics, T (assuming that the number of authors on
each document has negligible contribution to the com-
plexity). The count matrices are saved at the 2000th
iteration of this sampling process. We do this 10 times
so that 10 samples are collected in this manner (the
Markov chain is started 10 times from random initial
assignments).

4 Experimental results

In our results we used two text data sets consisting of
technical papers—full papers from the NIPS confer-
ence2 and abstracts from CiteSeer (Lawrence, Giles,
& Bollacker, 1999). We removed extremely common
words from each corpus, a standard procedure in “bag
of words” models. This leads to a vocabulary size of
V = 13, 649 unique words in the NIPS data set and
V = 30, 799 unique words in the CiteSeer data set.
Our collection of NIPS papers contains D = 1, 740 pa-
pers with K = 2, 037 authors and a total of 2, 301, 375
word tokens. Our collection of CiteSeer abstracts con-
tains D = 162, 489 abstracts with K = 85, 465 authors
and a total of 11, 685, 514 word tokens.

4.1 Examples of topic and author

distributions

The NIPS data set contains papers from the NIPS
conferences between 1987 and 1999. The conference
is characterized by contributions from a number of
different research communities in the general area of
learning algorithms. Figure 2 illustrates examples of
8 topics (out of 100) as learned by the model for the
NIPS corpus. The topics are extracted from a single
sample at the 2000th iteration of the Gibbs sampler.
Each topic is illustrated with (a) the top 10 words most
likely to be generated conditioned on the topic, and
(b) the top 10 most likely authors to have generated
a word conditioned on the topic. The first 6 topics we
selected for display (left to right across the top and the
first two on the left on the bottom) are quite specific
representations of different topics that have been pop-
ular at the NIPS conference over the time-period 1987–
99: EM and mixture models, handwritten character
recognition, reinforcement learning, SVMs and kernel
methods, speech recognition, and Bayesian learning.

2The NIPS data set in Matlab format is available on-
line at http://www.cs.toronto.edu/~roweis/data.html.



WORD PROB. WORD PROB. WORD PROB. WORD PROB.

LIKELIHOOD 0.0539 RECOGNITION 0.0400 REINFORCEMENT 0.0411 KERNEL 0.0683

MIXTURE 0.0509 CHARACTER 0.0336 POLICY 0.0371 SUPPORT 0.0377

EM 0.0470 CHARACTERS 0.0250 ACTION 0.0332 VECTOR 0.0257

DENSITY 0.0398 TANGENT 0.0241 OPTIMAL 0.0208 KERNELS 0.0217

GAUSSIAN 0.0349 HANDWRITTEN 0.0169 ACTIONS 0.0208 SET 0.0205

ESTIMATION 0.0314 DIGITS 0.0159 FUNCTION 0.0178 SVM 0.0204

LOG 0.0263 IMAGE 0.0157 REWARD 0.0165 SPACE 0.0188

MAXIMUM 0.0254 DISTANCE 0.0153 SUTTON 0.0164 MACHINES 0.0168

PARAMETERS 0.0209 DIGIT 0.0149 AGENT 0.0136 REGRESSION 0.0155

ESTIMATE 0.0204 HAND 0.0126 DECISION 0.0118 MARGIN 0.0151

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.

Tresp_V 0.0333 Simard_P 0.0694 Singh_S 0.1412 Smola_A 0.1033

Singer_Y 0.0281 Martin_G 0.0394 Barto_A 0.0471 Scholkopf_B 0.0730

Jebara_T 0.0207 LeCun_Y 0.0359 Sutton_R 0.0430 Burges_C 0.0489

Ghahramani_Z 0.0196 Denker_J 0.0278 Dayan_P 0.0324 Vapnik_V 0.0431

Ueda_N 0.0170 Henderson_D 0.0256 Parr_R 0.0314 Chapelle_O 0.0210

Jordan_M 0.0150 Revow_M 0.0229 Dietterich_T 0.0231 Cristianini_N 0.0185

Roweis_S 0.0123 Platt_J 0.0226 Tsitsiklis_J 0.0194 Ratsch_G 0.0172

Schuster_M 0.0104 Keeler_J 0.0192 Randlov_J 0.0167 Laskov_P 0.0169

Xu_L 0.0098 Rashid_M 0.0182 Bradtke_S 0.0161 Tipping_M 0.0153

Saul_L 0.0094 Sackinger_E 0.0132 Schwartz_A 0.0142 Sollich_P 0.0141

WORD PROB. WORD PROB. WORD PROB. WORD PROB.

SPEECH 0.0823 BAYESIAN 0.0450 MODEL 0.4963 HINTON 0.0329

RECOGNITION 0.0497 GAUSSIAN 0.0364 MODELS 0.1445 VISIBLE 0.0124

HMM 0.0234 POSTERIOR 0.0355 MODELING 0.0218 PROCEDURE 0.0120

SPEAKER 0.0226 PRIOR 0.0345 PARAMETERS 0.0205 DAYAN 0.0114

CONTEXT 0.0224 DISTRIBUTION 0.0259 BASED 0.0116 UNIVERSITY 0.0114

WORD 0.0166 PARAMETERS 0.0199 PROPOSED 0.0103 SINGLE 0.0111

SYSTEM 0.0151 EVIDENCE 0.0127 OBSERVED 0.0100 GENERATIVE 0.0109

ACOUSTIC 0.0134 SAMPLING 0.0117 SIMILAR 0.0083 COST 0.0106

PHONEME 0.0131 COVARIANCE 0.0117 ACCOUNT 0.0069 WEIGHTS 0.0105

CONTINUOUS 0.0129 LOG 0.0112 PARAMETER 0.0068 PARAMETERS 0.0096

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.

Waibel_A 0.0936 Bishop_C 0.0563 Omohundro_S 0.0088 Hinton_G 0.2202

Makhoul_J 0.0238 Williams_C 0.0497 Zemel_R 0.0084 Zemel_R 0.0545

De-Mori_R 0.0225 Barber_D 0.0368 Ghahramani_Z 0.0076 Dayan_P 0.0340

Bourlard_H 0.0216 MacKay_D 0.0323 Jordan_M 0.0075 Becker_S 0.0266

Cole_R 0.0200 Tipping_M 0.0216 Sejnowski_T 0.0071 Jordan_M 0.0190

Rigoll_G 0.0191 Rasmussen_C 0.0215 Atkeson_C 0.0070 Mozer_M 0.0150

Hochberg_M 0.0176 Opper_M 0.0204 Bower_J 0.0066 Williams_C 0.0099

Franco_H 0.0163 Attias_H 0.0155 Bengio_Y 0.0062 de-Sa_V 0.0087

Abrash_V 0.0157 Sollich_P 0.0143 Revow_M 0.0059 Schraudolph_N 0.0078

Movellan_J 0.0149 Schottky_B 0.0128 Williams_C 0.0054 Schmidhuber_J 0.0056

TOPIC 31 TOPIC 61 TOPIC 71 TOPIC 100

TOPIC 19 TOPIC 24 TOPIC 29 TOPIC 87

Figure 2: An illustration of 8 topics from a 100-topic
solution for the NIPS collection. Each topic is shown
with the 10 words and authors that have the highest
probability conditioned on that topic.

For each topic, the top 10 most likely authors are well-
known authors in terms of NIPS papers written on
these topics (e.g., Singh, Barto, and Sutton in rein-
forcement learning). While most (order of 80 to 90%)
of the 100 topics in the model are similarly specific
in terms of semantic content, the remaining 2 topics
we display illustrate some of the other types of “top-
ics” discovered by the model. Topic 71 is somewhat
generic, covering a broad set of terms typical to NIPS
papers, with a somewhat flatter distribution over au-
thors compared to other topics. Topic 100 is somewhat
oriented towards Geoff Hinton’s group at the Univer-
sity of Toronto, containing the words that commonly
appeared in NIPS papers authored by members of that
research group, with an author list largely consisting
of Hinton plus his past students and postdocs.

Figure 3 shows similar types of results for 4 selected
topics from the CiteSeer data set, where again top-
ics on speech recognition and Bayesian learning show
up. However, since CiteSeer is much broader in con-
tent (covering computer science in general) compared
to NIPS, it also includes a large number of topics not

WORD PROB. WORD PROB. WORD PROB. WORD PROB.

SPEECH 0.1134 PROBABILISTIC 0.0778 USER 0.2541 STARS 0.0164

RECOGNITION 0.0349 BAYESIAN 0.0671 INTERFACE 0.1080 OBSERVATIONS 0.0150

WORD 0.0295 PROBABILITY 0.0532 USERS 0.0788 SOLAR 0.0150

SPEAKER 0.0227 CARLO 0.0309 INTERFACES 0.0433 MAGNETIC 0.0145

ACOUSTIC 0.0205 MONTE 0.0308 GRAPHICAL 0.0392 RAY 0.0144

RATE 0.0134 DISTRIBUTION 0.0257 INTERACTIVE 0.0354 EMISSION 0.0134

SPOKEN 0.0132 INFERENCE 0.0253 INTERACTION 0.0261 GALAXIES 0.0124

SOUND 0.0127 PROBABILITIES 0.0253 VISUAL 0.0203 OBSERVED 0.0108

TRAINING 0.0104 CONDITIONAL 0.0229 DISPLAY 0.0128 SUBJECT 0.0101

MUSIC 0.0102 PRIOR 0.0219 MANIPULATION 0.0099 STAR 0.0087

AUTHOR PROB. AUTHOR PROB. AUTHOR PROB. AUTHOR PROB.

Waibel_A 0.0156 Friedman_N 0.0094 Shneiderman_B 0.0060 Linsky_J 0.0143

Gauvain_J 0.0133 Heckerman_D 0.0067 Rauterberg_M 0.0031 Falcke_H 0.0131

Lamel_L 0.0128 Ghahramani_Z 0.0062 Lavana_H 0.0024 Mursula_K 0.0089

Woodland_P 0.0124 Koller_D 0.0062 Pentland_A 0.0021 Butler_R 0.0083

Ney_H 0.0080 Jordan_M 0.0059 Myers_B 0.0021 Bjorkman_K 0.0078

Hansen_J 0.0078 Neal_R 0.0055 Minas_M 0.0021 Knapp_G 0.0067

Renals_S 0.0072 Raftery_A 0.0054 Burnett_M 0.0021 Kundu_M 0.0063

Noth_E 0.0071 Lukasiewicz_T 0.0053 Winiwarter_W 0.0020 Christensen-J 0.0059

Boves_L 0.0070 Halpern_J 0.0052 Chang_S 0.0019 Cranmer_S 0.0055

Young_S 0.0069 Muller_P 0.0048 Korvemaker_B 0.0019 Nagar_N 0.0050

TOPIC 10 TOPIC 209 TOPIC 87 TOPIC 20

Figure 3: An illustration of 4 topics from a 300-topic
solution for the CiteSeer collection. Each topic is
shown with the 10 words and authors that have the
highest probability conditioned on that topic.

seen in NIPS, from user interfaces to solar astrophysics
(Figure 3). Again the author lists are quite sensible—
for example, Ben Shneiderman is a widely-known se-
nior figure in the area of user-interfaces.

For the NIPS data set, 2000 iterations of the Gibbs
sampler took 12 hours of wall-clock time on a stan-
dard PC workstation (22 seconds per iteration). Cite-
seer took 111 hours for 700 iterations (9.5 minutes
per iteration). The full list of tables can be found
at http://www.datalab.uci.edu/author-topic, for
both the 100-topic NIPS model and the 300-topic Cite-
Seer model. In addition there is an online JAVA
browser for interactively exploring authors, topics, and
documents.

The results above use a single sample from the Gibbs
sampler. Across different samples each sample can
contain somewhat different topics i.e., somewhat dif-
ferent sets of most probable words and authors given
the topic, since according to the author-topic model
there is not a single set of conditional probabilities, θ
and φ, but rather a distribution over these conditional
probabilities. In the experiments in the sections below,
we average over multiple samples (restricted to 10 for
computational convenience) in a Bayesian fashion for
predictive purposes.

4.2 Evaluating predictive power

In addition to the qualitative evaluation of topic-
author and topic-word results shown above, we also
evaluated the proposed author-topic model in terms
of perplexity, i.e., its ability to predict words on new
unseen documents. We divided the D = 1, 740 NIPS
papers into a training set of 1, 557 papers with a total
of 2, 057, 729 words, and a test set of 183 papers of



which 102 are single-authored papers. We chose the
test data documents such that each of the 2, 037 au-
thors of the NIPS collection authored at least one of
the training documents.

Perplexity is a standard measure for estimating the
performance of a probabilistic model. The perplex-
ity of a set of test words, (wd,ad) for d ∈ Dtest, is
defined as the exponential of the negative normalized
predictive likelihood under the model,

perplexity(wd|ad) = exp

[

−
ln p(wd|ad)

Nd

]

. (7)

Better generalization performance is indicated by a
lower perplexity over a held-out document.

The derivation of the probability of a set of words
given the authors is a straightforward calculation in
the author-topic model:

p(wd|ad) =

∫

dθ

∫

dφp(θ|Dtrain)p(φ|Dtrain)

×

Nd
∏

m=1





1

Ad

∑

i∈ad,j

θijφwmj



 . (8)

The term in the brackets is simply the probability for
the word wm given the set of authors ad. We approx-
imate the integrals over φ and θ using the point esti-
mates obtained via Equations 5 and 6 for each sample
of assignments x, z, and then average over samples.
For documents with a single author this formula be-
comes

p(wd|ad) =
1

S

S
∑

s=1

Nd
∏

m=1





∑

j

θs
adjφ

s
wmj



 ,

where θs
adj , φs

wmj are point estimates from sample s,
S is the number of samples used, and ad is no longer
a vector but a scalar that stands for the author of the
document.

In the first set of experiments we compared the topic
model (LDA) of Section 2.1, the author model of Sec-
tion 2.2, and our proposed author-topic model from
Section 2.3. For each test document, a randomly gen-

erated set of N
(train)
d training words were selected and

combined with the training data. Each model then
made predictions on the other words in each test doc-
ument, conditioned on the combination of both (a)
the documents in the training data corpus and (b) the
words that were randomly selected from the document.
This simulates the process of observing some of the
words in a document and making predictions about

the rest. We would expect that as N
(train)
d increases

the predictive power of each model would improve as it
adapts to the document. The author-topic and author
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Figure 5: Perplexity of the 102 single-authored test
documents from the NIPS collection, conditioned both
on the correct author and authors ranked by perplexity
using the model, as described in the text.

models were both also conditioned on the identity of
the true authors of the document. In all models, the
topic and author distributions were all updated to new
predictive distributions given the combination of the

N
(train)
d training words for the document being pre-

dicted and the full training data corpus. We averaged
over 10 samples from the Gibbs sampler when making
predictions for each word.

Figure 4 shows the results for the 3 models being com-
pared. The author model is clearly poorer than either
of the topic-based models, as illustrated by its high
perplexity. Since a distribution over words has to be
estimated for each author, fitting this model involves
finding the values of a large number of parameters,
limiting its generalization performance. The author-
topic model has lower perplexity early on (for small

values of N
(train)
d ) since it uses knowledge of the au-

thor to provide a better prior for the content of the

document. However, as N
(train)
d increases we see a

cross-over point where the more flexible topic model
adapts better to the content of this particular docu-
ment. Since no two scientific papers are exactly the
same, the expectation that this document will match
the previous output of its authors begins to limit the
predictive power of the author-topic model. For larger
numbers of topics, this crossover occurs for smaller val-

ues of N
(train)
d , since the topics pick out more specific

areas of the subject domain.

To illustrate the utility of these models in predicting
words conditioned on authors, we derived the perplex-
ity for each of the 102 singled-authored test documents
in the NIPS collection using the full text of each docu-
ment and S = 10. The averaged perplexity as a func-
tion of the number of topics T is presented in Fig-
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Figure 4: Perplexity versus N
(train)
d for different numbers of topics, for the author, author-topic, and topic (LDA)

models.

ure 5 (thick line). We also derived the perplexity of
the test documents conditioned on each one of the au-
thors from the NIPS collection, perplexity(wd|a) for
a = 1, ...,K. This results in K = 2, 037 different per-
plexity values. Then we ranked the results and various
percentiles from this ranking are presented in Figure
5. One can see that making use of the authorship
information significantly improves the predictive log-
likelihood: the model has accurate expectations about
the content of documents by particular authors. As
the number of topics increases the ranking of the cor-
rect author improves, where for 400 topics the aver-
aged ranking of the correct author is within the 20
highest ranked authors (out of 2,037 possible authors).
Consequently, the model provides a useful method for
identifying possible authors for novel documents.

4.3 Illustrative applications of the model

The author-topic model could be used for a variety of
applications such as automated reviewer recommenda-
tions, i.e., given an abstract of a paper and a list of the
authors plus their known past collaborators, generate
a list of other highly likely authors for this abstract
who might serve as good reviewers. Such a task re-
quires computing the similarity between authors. To
illustrate how the model could be used in this respect,
we defined the distance between authors i and j as the
symmetric KL divergence between the topics distribu-
tion conditioned on each of the authors:

sKL(i, j) =

T
∑

t=1

[

θit log
θit

θjt

+ θjt log
θjt

θit

]

. (9)

As earlier, we derived the averaged symmetric KL di-
vergence by averaging over samples from the posterior

Table 1: Symmetric KL divergence for pairs of authors

Authors n T=400 T=200 T=100

Bartlett P (8) - 2.52 1.58 0.90
Shawe-Taylor J (8)

Barto A (11) 2 3.34 2.18 1.25
Singh S (17)
Amari S (9) 3 3.44 2.48 1.57
Yang H (5)

Singh S (17) 2 3.69 2.33 1.35
Sutton R (7)

Moore A (11) - 4.25 2.89 1.87
Sutton R (7)

MEDIAN - 5.52 4.01 3.33
MAXIMUM - 16.61 14.91 13.32

Note: n is number of common papers in NIPS dataset.

distribution, p(θ|Dtrain).

We searched for similar pairs of authors in the NIPS
data set using the distance measure above. We
searched only over authors who wrote more than 5
papers in the full NIPS data set—there are 125 such
authors out of the full set of 2037. Table 1 shows the
5 pairs of authors with the highest averaged sKL for
the 400-topic model, as well as the median and min-
imum. Results for the 200 and 100-topic models are
also shown as are the number of papers in the data set
for each author (in parentheses) and the number of
co-authored papers in the data set (2nd column). All
results were averaged over 10 samples from the Gibbs
sampler.

Again the results are quite intuitive. For example,
although authors Bartlett and Shawe-Taylor did not
have any co-authored documents in the NIPS collec-



Table 2: Author entropies
Author n T=400 T=200 T=100

Jordan M 24 4.35 4.04 3.61
Fine T 4 4.33 3.94 3.52

Roweis S 4 4.32 4.02 3.61
Becker S 4 4.30 4.06 3.69
Brand M 1 4.29 4.03 3.65

MEDIAN 3.42 3.16 2.81
MINIMUM 1.23 0.78 0.58
Note: n is the number of papers by each author.

tion, they have in fact co-authored on other papers.
Similarly, although A. Moore and R. Sutton have not
co-authored any papers to our knowledge, they have
both (separately) published extensively on the same
topic of reinforcement learning. The distances between
the authors ranked highly (in Table 1) are significantly
lower than the median distances between pairs of au-
thors.

The topic distributions for different authors can also
be used to assess the extent to which authors tend to
address a single topic in their work, or cover multi-
ple topics. We calculated the entropy of each author’s
distribution over topics on the NIPS data, for differ-
ent numbers of topics. Table 2 shows the 5 authors
with the highest averaged entropy (for 400 topics) as
well as the median and the minimum—also shown are
the entropies for 200 and 100 topics. The top-ranked
author, Michael Jordan, is well known for producing
NIPS papers on a variety of topics. The papers associ-
ated with the other authors are also relatively diverse,
e.g., for author Terrence Fine one of his papers is about
forecasting demand for electric power while another
concerns asymptotics of gradient-based learning. The
number of papers produced by an author is not neces-
sarily a good predictor of topic entropy. Sejnowski T,
for example, who generated the greatest number of pa-
pers in our NIPs collection, 37 of the training papers,
is the 44th highest entropy author, with an entropy of
4.11 for T = 400.

5 Conclusions

The author-topic model proposed in this paper pro-
vides a relatively simple probabilistic model for ex-
ploring the relationships between authors, documents,
topics, and words. This model provides significantly
improved predictive power in terms of perplexity com-
pared to a more impoverished author model, where the
interests of authors are directly modeled with proba-
bility distributions over words. When compared to the
LDA topic model, the author-topic model was shown
to have more focused priors when relatively little is

known about a new document, but the LDA model can
better adapt its distribution over topics to the content
of individual documents as more words are observed.
The primary benefit of the author-topic model is that
it allows us to explicitly include authors in document
models, providing a general framework for answering
queries and making predictions at the level of authors
as well as the level of documents. Possible future direc-
tions for this work include using citation information
to further couple documents in the model (c.f. Cohn &
Hofmann, 2001), combining topic models with stylom-
etry models for author identification, and applications
such as automated reviewer list generation given sets
of documents for review.
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