Course Description

The web has become an outstanding environment for telling stories with data. This course will cover technologies for representing, modeling and displaying data in the context of interactive web pages. Practical skills for building web pages will be mixed with data mining algorithms and theoretical approaches to graphics. We will use the D3 Javascript library to build both static and dynamic visualizations. Students will also learn functional programming style in Javascript and scalable vector graphics (SVG) as necessary to use D3. We will introduce a number of popular data mining models and algorithms such as Naïve Bayes classifiers, k-means clustering, and network layout methods, which we will incorporate into web visualizations.

Contact Information

Email Prof. Mimno for course administrative questions. Post to Piazza about course content questions.

Professor:
David Mimno, Gates 205. 607-255-8919. Best contact method is email mimno@cornell.edu. I will reply within 24 hours.

Grad TAs:
Moontae Lee. moontae@cs.cornell.edu.
Maria Antoniak. maa343@cornell.edu
Gabe Culbertson. grc74@cornell.edu
Junia George. jag529@cornell.edu

TAs:

Grading
Grades will be based on attendance (10%), weekly homework (40%), two open-ended group projects (15% each), and a take-home final exam (for undergraduates in 3300) OR a third group project (for masters students in 5100) (20%). Homework will be assigned on Mondays, due at midnight the following Monday, and returned the Monday after. Work will be turned in through CMS. Regrade requests should go in writing to mimno@cornell.edu. The first project will be to design a static (non-interactive) web visualization. The second project will be to design an interactive visualization. Each group will be assigned to a TA. You will send weekly progress reports to your TA listing what each team member is responsible for and what has been accomplished in the past week, and flagging any problems or questions.

Absences and late/missing work

Class time will mix lecture, discussion, and hands-on programming exercises, so attendance is important. If you will be absent, there is a web form linked from the course website. Late homework will not be accepted, but your two lowest homework grades will be discarded. In the unlikely event that you are having difficulty with CMS, work received by email before the deadline will be accepted.

Check carefully that you have submitted the correct file in the correct format. In rare circumstances we are able to accept work that was not submitted correctly if a you can provide a version of the file that is timestamped in a way that you do not control, such as a Github checkin or an email attachment. Your laptop's "last modified" date is not acceptable.

In-class work

Web programming is a complicated skill, and there's no way to learn without practice. Each class will involve a daily programming problem that we will work on together. Template HTML files will be made available before class.

Laptops

In order to facilitate interactive in-class work, you are allowed to bring a laptop. If you don't have one or don't choose to bring one, work with someone sitting near you. If you have a laptop, you will be expected to use it for relevant work. "Multitasking" is a myth. Distractions limit your ability to learn, and the ability of those near you. If your laptop is open, expect to show the results of your in-class work, or to have thoughtful questions.

Academic Integrity

We will follow university policies as outlined in the Academic Integrity Handbook. You are encouraged to discuss homework, but each student will complete assignments alone.
Using other people's code is an important part of programming, but for group projects the code should be substantially the work of the group members except for standard libraries such as D3, lodash, and jQuery. Any code used in projects that was not written by the group members should be placed in separate files and clearly labeled with their source URLs. If you have benefitted from online resources such as examples or StackOverflow answers, list the URLs in comments in your own code, even if you did not directly copy anything.

Project work that relates to your other classes or research is encouraged, but you may not recycle assignments. There must be no doubt that the work you turn in for this class was done for this class.

Students with Disabilities

We will make every effort possible to ensure that the class works for all students. Contact Prof. Mimno if there is anything we should know about. If there is a specific event such as an exam that you are concerned about, please inform us at least two weeks in advance so that we have time to make arrangements.

SONA Credits

Many researchers on campus need participants for user studies and other types of experiments. The SONA system allows you to register for such studies. You will get 0.5 percent extra for this course, up to a maximum of 2.0 percent, for each 30 minute study (or equivalent). Participating in studies is a great way to find out what real research looks like. To register, go to this URL:

https://cornell-comm.sona-systems.com

Course Outline

The following is a tentative course outline, subject to change.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1, Jan 25 (WF)</td>
<td>Course objectives. Web environments. Javascript, JSON</td>
</tr>
<tr>
<td>Week 2, Jan 30</td>
<td>SVG and D3, Grammar of Graphics</td>
</tr>
<tr>
<td>Week 3, Feb 6</td>
<td>D3: circles, text, scales; naive Bayes classifiers</td>
</tr>
<tr>
<td>Week 4, Feb 13</td>
<td>D3: lines; Linear regression; Color theory</td>
</tr>
<tr>
<td>[Winter break]</td>
<td></td>
</tr>
<tr>
<td>Week 5, Feb 22</td>
<td>D3: transitions; k-means</td>
</tr>
<tr>
<td>Week 6, Feb 27</td>
<td>Self-positioning layouts and networks</td>
</tr>
<tr>
<td>Week 7, Mar 7</td>
<td>[Project 1 due Monday 3/6] Network sampling</td>
</tr>
<tr>
<td>Week 8, Mar 13</td>
<td>D3: paths, mouseovers; maps and geographic data</td>
</tr>
<tr>
<td>Week 9, Mar 20</td>
<td>More paths: Time series smoothing</td>
</tr>
<tr>
<td>Week 10, Mar 27</td>
<td>Perceptrons, SVMs</td>
</tr>
<tr>
<td>[Spring break]</td>
<td></td>
</tr>
</tbody>
</table>
Week 11, Apr 10 Location-sensitive Hashing
Week 12, Apr 17 Virtual reality and 3D visualization
Week 13, Apr 24 [Project 2 due Monday 4/17]
Week 14, May 1 Randomization, permutation testing, bootstrapping
Week 15, May 8 (MW) Summary and review [Project 3 (Masters only) due Friday May 12]

Take home final. Dates to be announced.