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Abstract

A database of objects discovered in houses in
the Roman city of Pompeii provides a unique
view of ordinary life in an ancient city. Ex-
perts have used this collection to study the
structure of Roman households, exploring the
distribution and variability of tasks in archi-
tectural spaces, but such approaches are nec-
essarily affected by modern cultural assump-
tions. In this study we present a data-driven
approach to household archeology, treating
it as an unsupervised labeling problem. This
approach scales to large data sets and pro-
vides a more objective complement to human
interpretation.

1 Introduction

Over the past century the goal of archeology has
shifted from finding objects of artistic value to recon-
structing the details of day-to-day life in ancient cul-
tures. Reconstructing daily life is difficult as the ev-
idence that would be useful was generally considered
commonplace and unworthy of preservation by people
at the time. Objects are gradually moved or disposed
of; structures are renovated, repurposed or recycled for
building materials. These ongoing processes make it
difficult to make statements about specific points in
time based on material evidence. A remarkable excep-
tion to this pattern is the Roman city of Pompeii in
southern Italy, which was was covered in volcanic ash
during an eruption of Mt. Vesuvius in 79 AD. As a
result of its sudden, violent destruction, many aspects
of day-to-day life in first-century Roman Italy were
preserved in place as they existed on a particular day.

The study of Pompeian households has until recently
been dominated by analyses of architectural patterns
and wall paintings, as these are easily available for

study. Only in the past few years has a database of ob-
jects, which are removed for conservation immediately
upon excavation, been compiled and made available
by Allison [2]. This database, which is available on-
line,1 contains more than 6000 artifact records for finds
in 30 architecturally similar “atrium-style” houses in
Pompeii. For each artifact, the database specifies a
type from 240 typological categories (coin, amphora,
etc.) and a find location from 574 rooms. Allison has
used data about artifacts in their original context to
challenge many common assumptions about the func-
tion of particular types of object, the use of particular
spaces, and the consistency of patterns of use across
different houses.

Figure 1: A Roman house, the Casa degli Amanti from
Pompeii. The entrance is at left, opening onto the atrium
(01), which leads to a colonnaded garden (09). Image from
http://www.stoa.org/projects/ph.

The relatively large amount of archeological informa-
tion compiled in the Pompeian households database
supports the application of statistical data mining
tools. In this paper we apply one such tool, Bayesian
mixed-membership modeling, in which rooms are mod-
eled as having mixtures of functions, and functions are
modeled as distributions over a “vocabulary” of ob-
ject types. Mixed-membership models have previously

1http://www.stoa.org/projects/ph/home



Table 1: The probability of the top five most probable object types for eight functional groups (K = 20).
Groups correspond roughly to object categories such as storage furniture, decorative statuary, ceramic storage jars, and
chests and cupboards.

0.403 architectural door fitting 0.359 large sculpture/sculpture fragment
0.376 door/chest/cupboard fitting 0.073 fixed statue base
0.031 chest/cupboard fitting 0.068 fountain/fountain fitting
0.023 fixed seat 0.059 marble or stone basin
0.020 key 0.056 marble base/statue base/basin base
0.165 pottery amphora/amphoretta/hydria 0.566 chest/cupboard fitting
0.120 pottery amphora fragment/lid 0.046 glass bottle/flask/pyxis
0.103 unidentified pottery vessel 0.043 chest/cista
0.095 nail 0.038 chest fitting
0.086 pottery jar/vase 0.028 cupboard
0.076 measuring equipment 0.355 vehicle fragment
0.050 iron or lead strip 0.309 harness
0.043 chisel 0.065 pendant
0.034 pick/pickaxe 0.029 coin
0.033 bone fitting/strip 0.022 cart/wagon
0.194 glass bottle/flask/pyxis 0.142 pottery jug
0.116 small glass bottle 0.090 pottery pot
0.060 glass beaker/cup 0.069 ceramic lamp
0.055 small glass jar/vase 0.048 terra sigillata bowl/cup
0.054 jewelry 0.039 pottery cup/small bowl

been applied to a broad range of inference problems
in applications such as population genetics [10], text
mining [3] and social network analysis [1]. We show
that mixed-membership models both address several
theoretical problems with simpler clustering methods
and also provide improved predictive ability. Com-
pared with a trained archaeologist, such models are
naive and simplistic, but they have the advantage that
they do not bring preconceived notions about culture
along with them. As a demonstration, after assessing
the model’s predictive ability we consider several issues
raised by Allison, and attempt to provide a perspec-
tive that is, if not unbiased, at least mathematically
concrete in its biases.

2 Clustering methods in household
archaeology

There are several previous examples of data-driven
methods in the archaeological study of ancient house-
holds. Fiedler considers the relative proportions
of fine, cooking, and plain ceramic ware found in
three room types in the Greek city of Leukos [7].
Ciolek-Torello applies PCA, factor analysis, and multi-
dimensional scaling to objects found at Grasshopper
Pueblo in Arizona [6], but finds the latent factors dif-
ficult to interpret. Cahill performs a k-means analysis
of houses in the Greek city of Olynthus, using the per-
centage of floor space allocated to each room type as
input variables [5].

Cahill also identifies several problems faced in at-
tempting to recover patterns of activity from house-

hold assemblages [5]:

• Artifact types are high-dimensional. The
database of houses at Olynthus contains more
than 1000 distinct types, comparable to Pompeii’s
240. This number of types cannot be easily stud-
ied and visualized.

• Rooms can serve more than one function, and ar-
tifact types can be used for more than one pur-
pose. A particular type of large shallow bowl
is often associated with washing, but “other ex-
amples of these artifacts, however, are found to-
gether with grinding assemblages and may have
been used for kneading dough.” Cahill continues
“just as the use of space in ancient houses was
flexible and varied according to season or need,
the use of artifacts could change, and our models
for interpretation must be flexible enough to allow
for such changeability.”

• Quantification of artifacts is critical. As an ex-
ample, ancient looms used weights suspended by
bundles of warp threads. These weights tend to
survive after the organic matter of a loom has
decayed. Cahill argues, however, that the pres-
ence of a single weight is not sufficient to indi-
cate that a room was used for weaving, and that
only the presence of a dozen or more weights
in the same location indicates the presence of a
loom. Both Cahill and Ciolek-Torello advocate
using original data frequencies rather than binary
presence/absence variables.



Bayesian mixed membership models address all three
issues. First, such models are appropriate for high-
dimensional categorical variables, having been applied
to text documents, where vocabulary sizes are in the
tens of thousands. Second, mixed membership mod-
els allow individual groups of observations to combine
multiple “components” such as topics or activities,
while simultaneously allowing any observed dimension,
such as a word or artifact type, to be generated with
non-zero probability by any component. Finally, us-
ing the multinomial event model rather than the bi-
nary event model allows us to take into account the
number of times an artifact type occurs, rather than
the simple fact that that type is present. For example,
a single loom weight by itself might be absorbed into
the functional group of other objects in the same room,
while a group of 15 loom weights provides substantial
evidence that a functional group with high probability
of generating loom weights is active.

3 Models for predicting room contents

The goal of this work is to use the evidence available
to us from archaeological excavations to learn predic-
tive models for the contents of different rooms in Ro-
man houses. Such models should then help us bet-
ter understand how the Romans used their domestic
spaces. The information in the database compiled by
Allison consists of a set of 30 houses, each consisting
of between 7 and 56 rooms. Details on the houses
are provided in Table 4. Each room is labeled with a
type based on its architectural features. Room types
are further divided between rooms surrounding the
atrium, an open courtyard adjacent to the main street
entrance (room 01 in Figure 1), rooms surrounding
a garden area (room 09), and other rooms, including
kitchens and bath complexes. Descriptions of room
types and their frequencies are shown in Table 2. In
each room, artifacts of different types were recorded.

We now introduce mathematical notation for these en-
tities. Let H be the set of houses {h1, ..., h30}. A room
r in house h has type t ∈ {1, ..., 22}, and contains a
set of objects. Objects are instances of a fixed dictio-
nary of artifact classes A. Let the set of object class
indicators x1, ..., xNr

be the objects in room r, such
that x3 = a if the third object is of class a. For read-
ers familiar with text processing, this representation
is similar to the standard bag-of-words model, with
rooms analogous to documents, and objects analogous
to words. Inspired by methods that have been applied
to document analysis, we present four predictive mod-
els (names used in figures are shown in parentheses).

1. A single-distribution model (Simple), equivalent
to a unigram language model. This model

predicts artifact types based on the frequency
of previously-seen artifacts, smoothed using a
Dirichlet model [12]. Let Na be the number of
instances of artifact type a in the training data
and η be a smoothing parameter. The probabil-
ity of a room r is

P (x(r)) =

Nr∏
i=1

Nxi
+ η∑

aNa + |A|η
. (1)

2. A conditional type-distribution model (CondSim-
ple), a “Naive Bayes” model. This model is iden-
tical to the previous model, but takes into account
room types. Let Na|t be the number of instances
of artifact type a in rooms of type t in the training
data. Conditioned on its type, the probability of
a room r is

P (x(r)|t) =

Nr∏
i=1

Nxi|t + η∑
aNa|t + |A|η

. (2)

3. A mixed-membership “topic model” over func-
tional groups (FG). As in text-oriented topic mod-
els [3], room contents are drawn from a mixture
of k component distributions, which we describe
here as “functional groups” (ie “topics” in docu-
ment modeling). Examples are shown in Table 1.
Given an allocation of objects in the training set
to functional groups (either through hard or soft
assignments), let Na|k be the number of instances
of type a in group k. The probability of an ob-
ject type a given a group k P (a|k, β) has the same
form as Eq. 1 with Na|k substituted for Na and β
for η. Let z1, ..., zNr

be indicator variables specify-
ing an allocation of the objects x1, ..., xNr

in a new
room r, such that zi = a if object xi is generated
by group k, and Nk|r =

∑
i Izi=k. Let α1, ..., αK

be a vector of Dirichlet parameters. The proba-
bility of a room is then a marginalization over all
possible settings of z:

P (x(r)) =
∑
z

Γ(
∑

k αk)

Γ(
∑

k αk +Nr)

∏
k

Γ(αk +Nk|r)

Γ(αk)

×
Nr∏
i=1

P (xi|zi, β).

(3)

4. A mixed-membership model over functional
groups conditioned on room type (CFG). This
model is similar to the previous model, but with a

distinct vector of Dirichlet parameters α
(t)
1 , ..., α

(t)
K

for each room type t.

These first two models draw the entire contents of
a room from a single distribution. The second two
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Figure 2: The mixed-membership model conditioned on room types has the best perplexity. Each point
represents the average perplexity over all rooms of each of the 30 houses. The dark line shows the mean average perplexity
for each model.

are mixed-membership models that draw objects in a
room from a room-specific mixture of distributions.
The first and third models do not take into account
room types, while the second and fourth use room
types at training time and condition on room type at
testing time.

Inference in the first two models can be accomplished
by counting. Inference in the mixed-membership mod-
els was carried out by Gibbs sampling using the Mal-
let toolkit [8]. For the simple mixed-membership
model (FG), asymmetric room-group hyperparameters
α1, ..., αk and a single symmetric hyperparameter β
were iteratively optimized as advocated by Wallach et
al. [11]. Room-type-specific Dirichlet priors over func-
tional groups were learned post-hoc from the simple
mixed-membership model given saved Gibbs sampling
states [9].

4 Evaluation of Predictive Ability

We begin by evaluating these models using leave-
one-out cross validation on houses. For thirty train-
ing runs, we estimated parameters for the four mod-
els. For the mixed-membership model, we trained
25 models, five random initializations each for K ∈
{10, 15, 20, 25, 30}. We ran each model for 10,000 it-
erations of Gibbs sampling, saving states every 500
iterations.

Eq. 3 involves an intractable summation over an ex-
ponential number of possible functional group assign-
ments. Held-out probability for rooms in the left-
out houses was therefore estimated using Buntine’s
sequential method [4]. In order to make comparisons
between rooms with differing numbers of objects, we
report perplexity, the negative log probability of the
room divided by the number of objects, as is typical
in language modeling.

The choice of the number of functional groups K af-
fected perplexity, with more groups leading to greater
likelihood. Average perplexities for different values of
K are shown in Table 3. We did not consider K greater
than 30 due to the relatively small size of the data set.
All subsequent perplexity numbers are averaged over
these five values of K.

Table 3: CFG has better perplexity than FG. Per-
plexity improves with larger K.

Model 10 15 20 25 30
FG 4.49 4.48 4.46 4.46 4.45

CFG 4.41 4.38 4.35 4.33 4.32

Overall, the conditional functional groups mixed-
membership model provides the best predictive perfor-
mance averaged over all rooms, followed by the func-
tional groups model, the conditional type-distribution
model, and the simple single-distribution model. The
difference in means between each pair of models is
significant according to a pairwise t-test. We found
small p-values for all pairs except between the two
non-mixed-membership models, which have p = 0.002.
This performance of different models, however, varies
between houses and between room types.

4.1 Perplexity by house

Figure 2 shows the average perplexity of each house
under the four models. In most cases the mixed-
membership model conditioned on room type performs
best, followed by the simple mixed-membership model.
The conditional single-distribution model outperforms
the simple “unigram” model in the majority of cases,
21 of 30 houses, but not always. House 4, the Casa dei
Ceii, is the most unpredictable in all models. Allison



Table 2: Room types specified by Allison [2]. These differ slightly from traditional nomenclature using Latin names
derived from literary sources.

ID N Sect. Description Latin name
1 18 front main entranceway fauces, vestibula
2 8 front room leading directly off from entranceway cella ostiaria
3 35 front front hall, usually with central opening and pool atrium
4 80 front small closed room off side of front hall cubiculum
5 16 front open-fronted area off side of front hall ala
6 24 front large/medium room off corner of front hall triclinium
7 18 front open-sided room opposite main entrance or leading to garden tablinum
8 25 front long, narrow internal corridor fauces, andrones
9 36 garden main garden, collonaded garden peristylum, etc.
10 17 garden large/medium closed room off garden/terrace with no view triclinium
11 31 garden large/medium open-fronted room off garden/terrace with window or

wide entranceway
oecus, exedra, triclinium

12 43 garden small closed room off garden/terrace or lower floor cubiculum
13 9 garden small open-fronted area of garden/terrace or lower floor exedra
14 42 other room with cooking hearth (kitchen) culina
15 11 other latrine as entire room latrina
16 43 other other room outside main front-hall/garden complex repositorium, etc.
17 23 other stairway
18 14 other secondary internal garden or court, usually not collonaded hortus
19 4 other secondary entrance or entrance courtyard fauces
20 7 other room at front of house open to street (shop) tabernae
21 11 other bath area balneae etc.
22 53 other upper floor rooms and material in upper-level deposits cenaculum

reports that this house shows signs of having been dis-
turbed after the eruption, possibly by people familiar
with the floor plan of the house and the neighboring
house. The most well-predicted house is number 25,
House VIII 2,26, which has the fewest objects of any
house (17). There is no clear relationship between av-
erage perplexity and number of objects, however: the
largest collection (house 9, the Casa del Menandro), is
in the middle range of perplexity scores.

4.2 Perplexity by room type

We can also look at the distribution of perplexities
by room type. There are clear and consistent ar-
chitectural patterns in Roman houses, but architec-
tural similarity does not necessarily imply similarity
of use. Evidence from Pompeii is commonly used to
infer how Romans organized their household activities.
It is therefore critical to evaluate how consistent the
contents of rooms are between each other, in order to
determine whether we can extrapolate from the sample
of available rooms to more general conclusions about
the specific function of rooms.

Allison’s classification of room types is shown in Table
2. Average perplexities over each room type are shown
in Figure 3 (note that there is an additional type 0 for
lower floors included in the online database but not
the published description). The dark line shows the
mean of the average perplexities for room types. In

most cases, the two mixed-membership models outper-
form the non-mixed-membership baseline models, in-
dicating that rooms are better described by a combina-
tion of more specific distributions learned from several
different room types than room-specific distributions.
The relative performance of the four models, however,
varies between room types. Certain specialized rooms,
such as entranceways (1), kitchens (14), latrines (15)
and stairways (20) are better predicted by the two
conditional models than their non-conditional counter-
parts. The type-distribution model is better than the
functional group model for kitchens (p = 0.0002), but
not significantly for front halls (3, p = 0.62). In many
other cases, however, the conditional type-distribution
model is either indistinguishable from or worse than
the single-distribution model.

If the average perplexity for a room type is greater
for a non-conditional model than that model’s con-
ditional version, room type information is useful for
prediction, implying that the contents of a particular
room type are similar across houses. If perplexity is
greater for the conditional model, individual instances
of a room type do not predict the contents of simi-
lar rooms. The variability of perplexities are generally
smaller for rooms centered around the front hall and
the garden than “other” specialized rooms. For exam-
ple, kitchens (14) and stairways (17) are better pre-
dicted conditioned on their types, indicating that these
rooms have consistent contents. This argument is to
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Figure 3: Conditioning on room type frequently does not improve performance. Each point shows the average
perplexity for one of the 22 room types (see Table 2). Main gardens (9) were difficult for all models to predict, indicating
varied usage, while specialized rooms such as kitchens (14), latrines (15), and stairways (17) are distinctive and similar
across houses. The dark line shows the mean average perplexity for each model.

some extent circular, because these two room types
are at least partly defined by the presence of large,
immovable fixtures such as hearths and stairs, but it
provides an indication of what the model should show
if there is consistent use. In contrast, rooms open to
the street (20) are less well predicted when conditioned
on their type, indicating that conditional models are
overfitting, and suggesting that we should be wary of
generalizing about the contents of such rooms given
our sample.

5 Context-driven estimation of
artifact function

The models presented in Section 3 provide a tool for
testing archaeological questions. In this section we at-
tempt to validate two hypotheses proposed by Allison.

When artifacts are excavated, standard archeological
practice involves removing them to secure storage for
preservation. Although the location of artifacts is care-
fully noted in modern scientific digs, artifacts in stor-
age tend to be analyzed in comparison to typologically
similar objects rather than within their original con-
text. As a result, questions about the use or func-
tion of particular artifact types have been based more
on arbitrary tradition and researchers’ perceptions of
what an artifact is reminiscent of than the types of
objects found with the object. For example, Allison
identifies two classes of artifact, the casseruola (“casse-
role dish”) and forma di pasticceria (“pastry mold”),
that were named based on similarities to 19th century
household objects. She cites research going back more
than 100 years suggesting that these items were not
used in food preparation contexts, but finds that con-
temporary scholars still make this assumption due to
their (modern) names.

Using imaginative 19th century names to understand
the function of objects is not good practice, but simply
counting cooccurrences within rooms may also lead to
improper rejection of connections. Due to small sam-
ple sizes, it may be possible for two related items to
never appear together in a room purely by chance. In
order to reduce bias of both kinds, we explore the func-
tion of these artifact types using only cooccurrence
data, without any reference to the actual typology
of the objects. We use the functional group mixed-
membership model to detect clusters of object cooc-
currence that may indicate functions. Note that we are
still dependent on experts to classify physical objects
into appropriate categories, but given those classifica-
tions we make no further archeological assumptions in
training the model. At the same time, we expect that
if two artifact types a1 and a2 appear with artifacts
a3, a4 and a5, all five objects will tend to be placed
in the same functional group, even if a1 and a2 never
occur together.

Intuitively, if two objects share a similar pattern of
use, they should both have high probability in one or
more “topic”. Given a model, we can evaluate the
probability that two artifact types a1 and a2 will be
produced by the same functional group, marginalized
over functions, as P (a1, a2) =

∑
k P (k)P (a1 | k)P (a2 |

k), where P (k) is proportional to the average number
of tokens assigned to functional group k and P (a1 |
k) is proportional to the average number of objects
of type a1 assigned to functional group k. Table 6
shows results for the two types mentioned previously.
There is little to no connection to food preparation
objects, supporting Allison’s claim that modern names
for these items are incorrect.



Table 4: The 30 houses in the data set vary in
the number of rooms R and number of of objects
recorded N . Houses in region VIII were excavated earli-
est, when records were not kept as rigorously as in modern
excavations.

ID R N Location Name
1 15 189 I 6,4 Casa del Sacello Iliaco
2 7 63 I 6,8-9 House I 6,8-9
3 12 275 I 6,11 Casa dei Quadretti Teatrali
4 12 125 I 6,15 Casa dei Ceii
5 16 67 I 6,13 Casa di Stallius Eros
6 13 99 I 7,7 Casa del Sacerdos Amandus
7 25 353 I 7,10-12 Casa dell’Efebo
8 20 112 I 7,19 House I 7,19
9 56 886 I 10,4 Casa del Menandro
10 15 522 I 10,7 Casa del Fabbro
11 16 164 I 10,8 House I 10,8
12 16 148 I 10,11 Casa degli Amanti
13 17 178 I 11,6 Casa della Venere in Bikini
14 18 122 III 2,1 Casa di Trebius Valens
15 52 748 IX 13,1-3 Casa di Julius Polybius
16 30 242 V 2,i Casa delle Nozze d’Argento
17 17 145 V 4,a Casa di M. Lucretius Fronto
18 16 176 VI 15,1 Casa dei Vettii
19 17 158 VI 15,5 House VI 15,5
20 13 158 VI 15,8 Casa del Principe di Napoli
21 20 187 VI 16,7 Casa degli Amorini Dorati
22 10 141 VI 16,15 Casa della Ara Massima
23 19 144 VI 16,26 House VI 16,26
24 23 120 VIII 2,14-16 House VIII 2,14-16
25 10 17 VIII 2,26 House VIII 2,26
26 11 61 VIII 2,28 House VIII 2,28
27 20 61 VIII 2,29-30 House VIII 2,29-30
28 20 71 VIII 2,34 House VIII 2,34
29 31 168 VIII,2,39 Casa di Giuseppe II
30 17 63 VIII 5,9 House VIII 5,9

6 Modeling room functions

The Roman houses included in the database show
strong architectural patterns. Much of the study
of Pompeian households has involved identifying cat-
egories of rooms and assigning functions to them.
Again, Allison argues that commonly held assump-
tions about such functions are incorrect. For exam-
ple, the atrium is often described as a formal space, in
which the pater familias received his clients and dis-
tributed gifts from a large metal chest. Allison argues
that the atrium was more of a utilitarian, industrial
space. Similarly, a closed room off the atrium is de-
scribed as a cubiculum (“bedroom”), but there is little
evidence that these rooms correspond to modern con-
cepts of bedrooms.

Before using an analysis of objects to provide informa-
tion about the function of spaces, it is important to
establish whether architectural room types have con-
sistent patterns of object contents. The city suffered
a severe earthquake 17 years before the final eruption,

Table 5: Objects most likely to occur with bronze
casseruola, marginalized over 20 functional groups (“top-
ics”): the first item associated with food prepara-
tion (found in kitchens with evidence of exposure
to fire) is well down the list.

bronze casseruola
0.00036 door/chest/cupboard fitting
0.00035 glass bottle/flask/pyxis
0.00028 small glass bottle
0.00026 pottery jug
0.00024 bronze jug/jug fragment
0.00022 chest/cupboard fitting
0.00020 ceramic lamp
0.00018 jewelry
0.00016 pottery beaker/small vase
0.00015 coin
0.00013 pottery pot

...
0.00010 table/table fittings/table base
0.00010 pottery jar/vase
0.00010 bronze cooking pot/basin/pot/fragment

Table 6: Objects likely to occur with a forma di pasticce-
ria are shown on the right, again showing no significant
connection to food preparation.

silver vessel/forma di pasticceria
0.00008 jewelry
0.00004 silver cup/bowl/cup fragment
0.00004 chest/cupboard fitting
0.00004 silver patera/casseruola/plate
0.00003 casket fitting
0.00002 coin
0.00002 bronze jug/jug fragment
0.00002 door/chest/cupboard fitting
0.00002 bronze or silver spoon
0.00002 chest fitting
0.00001 box/casket
0.00001 part of coin hoard
0.00001 small glass bottle
0.00001 hair pin
0.00001 ceramic lamp

and was disrupted before and after the eruption. As
shown previously, certain types of rooms have strong
connections to particular artifact classes, while for oth-
ers, conditioning on room type does not improve pre-
dictive performance.

As a result of this variability of room contents, it is
difficult to make general claims about what activities
occurred in which spaces. We can, however, attempt
to rule out certain possibilities. Table 7 shows prob-
able functional groups for several architectural types.
Atria show evidence of utilitarian storage: large ce-
ramic amphorae. The only type that shows significant
evidence of objects related to bedding is type 11 (large
open rooms with views of the garden); the cubiculum
does not.



Table 7: The cubiculum is not a bedroom. Distribu-
tions of functional groups in common room types.

Type 3 (atrium)
0.279 pottery amphora/amphoretta/hydria, building

material, stairway, impluvium/compluvium,
puteal/puteal fragment

0.108 chest/cupboard fitting, chest/cista, glass bot-
tle/flask/pyxis, chest fitting, cupboard

0.083 coin, ceramic lamp, small glass bottle, architec-
tural fitting, jewelry

0.077 pottery jug, ceramic lamp, table/table fit-
tings/table base, terra sigillata bowl/cup,
seashell/conch/snail shell

Type 4 (cubiculum)
0.122 recess, built-in cupboard, stairway, niche, uniden-

tified fixture/mound
0.116 shelving/mezzanine/suspension nails, recess, pot-

tery amphora/amphoretta/hydria, cistern head,
pottery pot

0.092 coin, ceramic lamp, small glass bottle, architec-
tural fitting, jewelry

0.065 pottery jug, pottery amphora/amphoretta/hy-
dria, pottery pot, pottery jar/vase, pottery
plate/dish/tray

Type 11 (exedra, oecus, triclinium)
0.111 door/chest/cupboard fitting, coin, ring, chest/

cupboard fitting, nail
0.109 recess, built-in cupboard, stairway, niche, uniden-

tified fixture/mound
0.080 bed/couch fragment, door/chest/cupboard fit-

ting, large sculpture/sculpture fragment, architec-
tural door fitting, bed/couch

0.058 human skeleton, jewelry, part of coin hoard,
bed/couch, bag

7 Conclusions

The excavations at Pompeii provide a unique view into
domestic life in 1st century Roman Italy. We ana-
lyzed a database of 30 Roman houses using four pre-
dictive models, comprising all combinations of single-
distribution and mixed-membership models, and un-
conditional models and models that condition on Alli-
son’s room type annotations. Building statistical mod-
els of the distribution of objects in these houses is valu-
able in that it provides a data-driven method for mea-
suring how confident we can be in making claims about
the function of domestic spaces.

In many cases, conditioning on room type did not
improve predictive performance, demonstrating that
room function is not necessarily determined by ar-
chitectural characteristics. Our results are consis-
tent with Allison’s challenge to assumptions that small
closed rooms (cubicula) were used for sleeping and that
two object types (casseruola and forma di pasticceria)
were used in food preparation.

We find that mixed-membership models provide a
promising method for identifying patterns of use in ar-
chaeological data. They find interpretable functional
groups, have good predictive performance, and address
theoretical problems with simpler clustering methods.
As the quantity of digitized data from excavations in-
creases, such methods should provide a powerful tool
for interpreting archaeological data.

Acknowledgements

The author is supported by a Google Digital Human-
ities Research grant. Eric Poehler suggested the data
set. Ross Scaife contributed to the development of the
Pompeian Households database. We hope he would
have liked this paper.

References

[1] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P.
Xing. Mixed membership stochastic blockmodels.
JMLR, pages 1981–2014, 2008.

[2] P. Allison. Pompeian households: an analysis of the
material culture. Cotsen Institute of Archaeology,
2001.

[3] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allo-
cation. JMLR, 2003.

[4] W. L. Buntine. Estimating likelihoods for topic mod-
els. In Asian Conference on Machine Learning, 2009.

[5] N. Cahill. Household and City Organization at Olyn-
thus. Yale University Press, 2001.

[6] R. Ciolek-Torello. An alternative model of room func-
tion from Grasshopper Pueblo, Arizona. In H. Hietala,
editor, Intrasite spatial analysis in archaeology, pages
127–153. Cambridge University Press, 1984.

[7] M. Fiedler. Houses at Leukas in Akarnania. In
B. A. Ault and L. C. Nevett, editors, Ancient Greek
houses and households: chronological, regional and so-
cial diversity, pages 99–118. University of Pennsylva-
nia Press, 2005.

[8] A. K. McCallum. MALLET: A machine learning for
language toolkit. http://mallet.cs.umass.edu, 2002.

[9] T. Minka. Estimating a Dirichlet distribution, 2000.

[10] J. K. Pritchard, M. Stephens, and P. Donnelly. In-
ference of population structure using multilocus geno-
type data. Genetics, 155:945–959, 2000.

[11] H. Wallach, D. Mimno, and A. McCallum. Rethinking
LDA: Why priors matter. In NIPS, 2009.

[12] C. Zhai and J. Lafferty. A study of smoothing meth-
ods for language models applied to ad hoc information
retrieval. In SIGIR, 2001.


