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How Do Senators Relate to Constituents?

Difference
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Why do some Muslim clerics support violent Jihad?

100 Topics Occuring in "Normal" Fatwas (Jihad Score < 0 )
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Shariah
The Prophet
Ibn Taymiyya
Ablutions
Money
Prayer
Permissibility
Heaven and Hell
Hajj
Duty

Favorite Jihadi Topics

Hadeeth
Dating
Zakat

Surahs and Verses
Hadeeth

Ramadan Fasting
Hadeeth

Divorce, Marriage, Sex
Fatwa Greeting Formula

Favorite Non−Jihadi Topics

Sin
Sheikh Uthaymeen
God's Oneness
Quran
Knowledge
Apostasy
Quran
Ulama
Heaven and Earth
Knowledge

Evenly Split Topics

Bootstrapped 95%
Confidence Interval

Nielsen (2013)
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How do we analyze open-ended survey response?
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Social Sciences Applications

These problems share a common structure:

Topic models as a tool of measurement
I events between countries (O’Connor et al 2013)
I “constitutional moments” (Stewart and Young 2013)
I media control in China (Stewart and Roberts 2014)

Extensive “metadata” in documents

Topical Prevalence and Topical Content

Primary QOI is how external variable drives topics.
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In Practice

‘Vanilla” LDA with post-hoc comparison

The exchangeability paradox.

Custom Models vs. Off the Shelf
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Our Approach

General framework for including covariates

General framework for including covariates

Two types of covariates:
I Topical Prevalence: Logistic Normal GLM
I Topical Content: Multinomial Logit on Words

Builds off: DMR (Mimno and McCallum 2008), SAGE (Eisenstein et al
2011) and the CTM (Blei and Lafferty 2007)
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Latent Dirichlet Allocation

Figure: Plate Notation of Latent Dirichlet Allocation

Graphic from David Blei’s Website: http://www.cs.princeton.edu/ blei/modeling-science.pdf
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Structural Topic Model

Language Model:

Topic Prevalence:

Topical Content:
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A Tale of Two Covariates

Prevalence

I Prior on the mixture over topics is now document-specific
I η ∼ N (Xγ,Σ)
I Documents which have similar covariates will tend to talk about the

same topics.

Content
I Distribution over words is now document-specific
I Topics are sparse deviations from a word-specific baseline
βk,g ∝ exp(m + κ(k) + κ(g) + κ(k,g))

I Documents which have similar covariates will tend to talk about topics
in the same way.

Regularizing priors to avoid false positives
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Inference and Implementation

Semi-collapsed, non-conjugate, mean-field variational EM

Propagating estimation uncertainty (method of composition)

Forthcoming R package
I Various meta-data topic models
I Post-estimation tools (labeling, evaluation statistics, plotting)
I Automated model selection
I Covariate uncertainty calculation
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Applications

In This Paper:

Open-Ended Survey Response (1 of 3)

Media Coverage of China (short example from longer paper)
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Open-Ended Response

Researchers opt for closed ended responses.

This requires,

Choosing an arbitrary scale

Choosing researcher defined categories. Sometimes putting an
“other” open ended option.

A debate exists on whether this is a good idea.

There are workflow advantages to closed ended responses.

In 10 minutes I can move from a mTurk survey, get 100 closed ended
responses to questions, put the data in R and type lm()

We want open-ended analysis to be (almost) that easy.
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Survey Experiment

Rand et al., Nature, “Spontaneous giving and calculated greed.”

Gut responses are cooperative

calculated responses lead to defection in prisoner’s dilemma

Subjects were told to
1 Write about when they have acted out of intuition, or feeling
2 Write about a time when they reflected and thought a lot about

something.

Afterward, subjects asked to describe their reasoning.
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Intuition Priming Effects

Topic 4 :  
 want, monei, more, keep, give, myself, make,

gave, group, greedi, put, littl, lose, need,
figur, even, gain, kept, less, left

Topic 1 :  
 believ, good, feel, felt, go, chanc, right, god,
decis, life, greater, reason, base, more, profit,

fact, out, get, answer, plai

-0.20 -0.10 0.00 0.05 0.10 0.15

Difference in Topic Proportions (Treated-Control)

Topic 4

Topic 1
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Different Intuitive Strategy: Women vs. Men
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Conclusion

Applied Social Science

I Explanation vs. prediction/exploration
I Background covariates on documents
I Need off-the-shelf tools

Our Contribution
I A new topic model for incorporating covariate info
I New software tools (releasing in the next few weeks)
I Methods for model selection, labeling topics and others
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Thanks!

Papers at:

scholar.harvard.edu/~bstewart
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