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Mixed Membership Model

Edoardo Airoldi, David Blei, Stephen
Fienberg and Eric Xing 2008

People belong to multiple communities

k communities and n nodes, k ≪ n

Node membership for node u: πu
◮ Mixed membership: πu ∈ [0, 1]k
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◮ Fractional membership: ‖πu‖1 = 1

Community Detection: Infer hidden communities from observed network.

Edge Formation Model

Edges are conditionally independent given community memberships

Dirichlet Community Membership Model

{πu} are independent draws from Dirichlet distribution

P[πu] ∝
k∏

j=1

πu(j)
αj−1,

k∑

j=1

πu(j) = 1,
k∑

j=1

αj = α0
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Goal: Recover communities Π given adjacency matrix G

Challenges in Learning Mixed Membership Models

Identifiability: when can parameters be estimated?

Guaranteed learning? What input required?
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Approach Overview and Contributions

Approaches(Anandkumar et al, COLT ’13)

Inverse moment method

Preprocessing to whiten and symmetrize data

Spectral approach: decompose tensor via batch power method

Postprocessing: Recover Π from the spectrum by linear operations

4 / 25



Approach Overview and Contributions

Approaches(Anandkumar et al, COLT ’13)

Inverse moment method

Preprocessing to whiten and symmetrize data

Spectral approach: decompose tensor via batch power method

Postprocessing: Recover Π from the spectrum by linear operations

Parallizeable? Speed? Scalability?

4 / 25



Approach Overview and Contributions

Approaches(Anandkumar et al, COLT ’13)

Inverse moment method

Preprocessing to whiten and symmetrize data

Spectral approach: decompose tensor via batch power method

Postprocessing: Recover Π from the spectrum by linear operations

Parallizeable? Speed? Scalability?

Contribution Summary

Randomized Low Rank Approximation for n× n matrix SVD

Online tensor decomposition

GPU Device to minimize data transfer overhead, thus fast updates

Sparse Implementation scalable to millions of nodes

Validation Metric: p-value test based “soft-pairing”
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Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB

M3(a, b, c) =
1

|X|
# of 3-stars with leaves a,b,c

=
1

|X|

∑

x∈X

G(x, a)G(x, b)G(x, c).

M3 =
1

|X|

∑
x∈X [G⊤

x,A ⊗G⊤
x,B ⊗G⊤

x,C ]

E[M3|ΠA,B,C ] =
∑
i∈[k]

λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

x

a b c
A B C

X
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Tensor Dimensionality Reduction

= + ....

Tensor E[M3|ΠA,B,C ] λ1(FA)1 ⊗ (FB)1 ⊗ (FC)1 λ2(FA)2 ⊗ (FB)2 ⊗ (FC)2

E[M3|ΠA,B,C ] =
∑

i∈[k] λi[(FA)i ⊗ (FB)i ⊗ (FC)i]
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E[M3|ΠA,B,C ] =
∑

i∈[k] λi[(FA)i ⊗ (FB)i ⊗ (FC)i]

Goal: Recover FA, FB , FC , ~λ through CP tensor decomposition

Preprocessing/Whitening

Orthogonalize and Symmetrize low dimensional tensor

Convert Mα0
3 of size O(n× n× n) to a

tensor T of size k × k × k

Find the whitening matrix W

Perform multilinear transformations on
Mα0

3 with W to get T
Tensor M3 Tensor T
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Whitening Matrix Computation

Symmetrization: Finding Second Order Moments Mα0
2

PairsB,C := G⊤
X,B ⊗G⊤

X,C

Mα0
2 =

(
PairsA,B Pairs†C,B

)
PairsC,B

(
Pairs†B,C

)⊤
Pairs⊤A,C −shift
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Whitening Matrix Computation

Orthogonalization: Finding Whitening Matrix W

W TMα0
2 W = I is solved by k-svd(Mα0

2 )

Randomized low rank approx. (Gittens & Mahoney 13’, Clarkson &
Woodruff 13’)

◮ Both dense and sparse format, tall-thin SVD only
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Tensor Eigen Analysis

Orthogonal symmetric tensor T =
∑

i ρir
⊗3
i

Fact T (I, ri, ri) =
∑

j ρj〈ri, rj〉
2rj = ρiri

11 / 25



Tensor Eigen Analysis

Orthogonal symmetric tensor T =
∑

i ρir
⊗3
i

Fact T (I, ri, ri) =
∑

j ρj〈ri, rj〉
2rj = ρiri

Power Method:

v 7→
T (I, v, v)

‖T (I, v, v)‖

T

vti vti

Problem: Recover k eigenvectors serially by deflation

11 / 25



Tensor Eigen Analysis

Orthogonal symmetric tensor T =
∑

i ρir
⊗3
i

Fact T (I, ri, ri) =
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j ρj〈ri, rj〉
2rj = ρiri

Power Method:

v 7→
T (I, v, v)

‖T (I, v, v)‖

T

vti vti

Problem: Recover k eigenvectors serially by deflation

Solution: Stochastic method and simultaneous recovery
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Stochastic (Implicit) Tensor Gradient Descent

argmin
v

{∥∥θ
∑

i∈[k]

⊗3vi −
∑

t∈X

T t
∥∥2
F

}
,

where vi are the unknown tensor eigenvectors, T t = gtA ⊗ gtB ⊗ gtC such
that gtA = W⊤G{x,A}, . . .
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vt+1

i ← vti−3θβ
t

k∑

j=1

[〈
vtj , v

t
i

〉2
vtj

]
+βt

〈
vti , g

t
A

〉〈
vti , g

t
B

〉
gtC+. . .

Orthogonality cost vs Correlation Reward

gtA

gtC

gtB

vti

vti

Never form the tensor explicitly; multilinear operation on implicit tensor.
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Computational Complexity (k ≪ n)

n = # of nodes

N = # of iterations

k = # of communities

m = # of sampled node pairs (variational)

Module Pre STGD Post Var

Space O(nk) O(k2) O(nk) O(nk)
Time O(n+ k3) O(Nk) O(n) O(mkN)

Variational method: O(m× k) for each iteration

O(n× k) < O(m× k) < O(n2 × k)

Our approach: O(n+ k3)

13 / 25



Computational Complexity (k ≪ n)

n = # of nodes

N = # of iterations

k = # of communities

m = # of sampled node pairs (variational)

Module Pre STGD Post Var

Space O(nk) O(k2) O(nk) O(nk)
Time O(n+ k3) O(Nk) O(n) O(mkN)

Variational method: O(m× k) for each iteration

O(n× k) < O(m× k) < O(n2 × k)

Our approach: O(n+ k3)

In practice STGD is extremely fast and is not the bottleneck
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GPU/CPU Implementation
GPU (SIMD)

GPU: Hundreds of cores; parallelism for matrix/vector operations

Speed-up: Order of magnitude gains

Big data challenges: GPU memory ≪ CPU memory ≪ Hard disk

Hard disk (expandable)

CPU memory (expandable)

GPU memory (not expandable) block

block

block

block

block

block

block

block

q q q

q q q

q q q

q q q

Storage hierarchy Partitioned matrix
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Big data challenges: GPU memory ≪ CPU memory ≪ Hard disk

Hard disk (expandable)

CPU memory (expandable)

GPU memory (not expandable) block

block

block

block

block

block

block

block

q q q

q q q

q q q

q q q

Storage hierarchy Partitioned matrix

CPU

CPU: Sparse Representation, Expandable Memory

Randomized Dimensionality Reduction
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Scaling Of The Stochastic Iterations

vt+1

i ← vti − 3θβt

k∑

j=1

[〈
vtj , v

t
i

〉2
vtj

]
+ βt

〈
vti , g

t
A

〉〈
vti , g

t
B

〉
gtC + . . .

Parallelize across
eigenvectors.

STGD is iterative:
device code reuse
buffers for updates.

vti

gtA,g
t
B ,g

t
C

CPU

GPU

Standard Interface

vti
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Scaling Of The Stochastic Iterations

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

 

 

Number of communities k

R
u
n
n
in
g
ti
m
e(
se
cs
)

MATLAB Tensor Toolbox

CULA Standard Interface

CULA Device Interface

Eigen Sparse
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Validation Metrics

Ground-truth membership available

Ground-truth membership matrix Π

Estimated membership Π̂
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Solution: p-value test based soft-“pairing”

Evaluation Metrics

Recovery Ratio: % of ground-truth com recovered

Error Score: E := 1
nk

∑
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Π1

Π2

Π3

Π4

Π̂1

Π̂2

Π̂3

Π̂4

Π̂5

Π̂6

Comparison with NMI

Not a true information theoretical measure for overlapping community

Not a suitable measure for unequal size communities
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Summary of Results

Friend
Users

Facebook

n ∼ 20k

Business
User
Reviews

Yelp

n ∼ 40k

Author
Coauthor

DBLP(sub)

n ∼ 1 million(∼ 100k)

Error (E) and Recovery ratio (R)

Dataset k̂ Method Running Time E R
Facebook(k=360) 500 ours 468 0.0175 100%
Facebook(k=360) 500 variational 86,808 0.0308 100%
.
Yelp(k=159) 100 ours 287 0.046 86%
Yelp(k=159) 100 variational N.A.
.
DBLP sub(k=250) 500 ours 10,157 0.139 89%
DBLP sub(k=250) 500 variational 558,723 16.38 99%
DBLP(k=6000) 100 ours 5407 0.105 95%

Thanks to Prem Gopalan and David Mimno for providing variational code.
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Summary of Results - Yelp Dataset

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31

21 / 25



Summary of Results - Yelp Dataset

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31

Bridgeness: Distance from vector [1/k̂, . . . , 1/k̂]⊤

Top-5 bridging nodes (businesses)

Business Categories
Four Peaks Brewing Co Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe
Pizzeria Bianco Restaurants, Pizza, Phoenix
FEZ Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix
Matt’s Big Breakfast Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Company Restaurants, Bars, Nightlife, Pubs, Tempe
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Conclusion

Mixed Membership Models

Can model overlapping communities

Efficient to learn from low order moments

Tensor Spectral Method

GPU/CPU implementation on large dataset with millions of nodes

Orders of magnitude speed gain than stochastic variational method

Innovative Evaluation Metric
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Questions?

arXiv:1309.0787v3 [cs.LG]

Contact us:
furongh@uci.edu

un.niranjan@uci.edu
a.anandkumar@uci.edu

http://newport.eecs.uci.edu/anandkumar/Lab/Lab.html
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Questions?

Thank you!

arXiv:1309.0787v3 [cs.LG]

Contact us:
furongh@uci.edu

un.niranjan@uci.edu
a.anandkumar@uci.edu

http://newport.eecs.uci.edu/anandkumar/Lab/Lab.html
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Comparison With NMI Score

H(Π̂mix|Πmix)norm := 1
k

∑
j∈[k]min

i∈[k̂]

H
(
Π̂mixi

|Πmixj

)

H(Πmixj
)

Nmix(Π̂mix : Πmix) := 1− 1
2

[
H(Πmix|Π̂mix)norm +H(Π̂mix|Πmix)norm

]
.

dense Π1

sparse Π2

length n membership vector

0
1

large sized community

small sized community

P (Πmix1 = 0) = # of 0s in Π1

n
equals to P (Πmix2 = 1) = # of 1s in Π2

n
.

P (Πmix1 = 1) = # of 1s in Π1

n
equals to P (Πmix2 = 0) = # of 0s in Π2

n
.

Therefore, H(Πmix1) = H(Πmix2).
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