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Latent Variable Modeling

Goal: Discover hidden effects from observed measurements

Example: document modeling

Observations: words. Hidden: topics.

Nursing Home Is Faulted Over Care After 

Storm

By MICHAEL POWELL and SHERI FINK

Amid the worst hurricane to hit New York City 

in nearly 80 years, officials have claimed that 

the Promenade Rehabilitation and Health 

Care Center failed to provide the most basic 

care to its patients.

In One Day, 11,000 Flee Syria as War and 

Hardship Worsen

By RICK GLADSTONE and NEIL 

MacFARQUHAR

The United Nations reported that 11,000 

Syrians fled on Friday, the vast majority of 

them clambering for safety over the Turkish 

border.

Obama to Insist on Tax Increase for the 

Wealthy

By HELENE COOPER and JONATHAN 

WEISMAN

Amid talk of compromise, President Obama 

and Speaker John A. Boehner both indicated 

unchanged stances on this issue, long a point 

of contention.

Hurricane Exposed Flaws in Protection of 

Tunnels

By ELISABETH ROSENTHAL

Nearly two weeks after Hurricane Sandy 

struck, the vital arteries that bring cars, trucks 

and subways into New York City’s 

transportation network have recovered, with 

one major exception: the Brooklyn-Battery 

Tunnel remains closed.

Behind New York Gas Lines, Warnings and 

Crossed Fingers

By DAVID W. CHEN, WINNIE HU and 

CLIFFORD KRAUSS

The return of 1970s-era gas lines to the five 

boroughs of New York City was not the result 

of a single miscalculation, but a combination 

of ignored warnings and indecisiveness.

Learning latent variable models: efficient methods and guarantees



Other Applications of Latent Variable Modeling

Social Network Modeling

Observed: social interactions.

Hidden: communities, relationships

Bio-Informatics

Observed: gene expressions or neural activity.

Hidden: gene regulators, functional mapping.

Recommendation Systems

Observed: recommendations: e.g. yelp reviews.

Hidden: User and business attributes

Applications in Speech, Vision . . .



Challenges in Learning Latent Variable Models

Challenges in Identifiability

When can latent variables be identified?

Conditions on the model parameters, e.g. on topic-word matrix or
dictionary elements?

Does identifiability also lead to tractable algorithms?



Challenges in Learning Latent Variable Models

Challenges in Identifiability

When can latent variables be identified?

Conditions on the model parameters, e.g. on topic-word matrix or
dictionary elements?

Does identifiability also lead to tractable algorithms?

Challenges in Design of Learning Algorithms

Maximum likelihood learning NP-hard (Arora et. al.)

In practice, methods such as Gibbs sampling, variational Bayes etc.
but no guarantees.

Guaranteed learning with minimal assumptions? Efficient methods?
Low sample and computational complexities?
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Typical Assumption in Latent Variable Models

Latent dimensionality ≪ observed dimensionality.

Applicable in community and document modeling

Low rank tensor through conditional independence relations

“Tensor Decompositions for Learning Latent Variable Models” by A. Anandkumar, R. Ge, D.

Hsu, S.M. Kakade and M. Telgarsky. Preprint, October 2012.

Overcomplete Latent Representations

Latent dimensionality ≫ observed dimensionality

Flexible modeling, robust to noise

Applicable in speech and image modeling

Large amount of unlabeled samples

This talk: Guaranteed Learning of Overcomplete Representations
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Linear Overcomplete Latent Variable Models

Also known as dictionary learning problem

Setup

Latent dimensionality k > observed dimensionality n.

A = [a1, . . . , ak]: Latent vectors (dictionary elements)

y ∈ R
n: Observation. Y = [y1, . . . , ym] ∈ R

n×m: Observation matrix.

Linear model: Y = AX.

Learning problem: Given Y , find A and X.

Challenges

Learning in overcomplete regime: k > n.

Ill-posed without further constraints.
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y ∈ R
n: word. m documents.

A = [a1, . . . , ak]: Topic-word matrix.

x ∈ R
k: Topic proportions vector

Linear model: E[y|x] = Ax.

y1, y2, y3: Three words/views

E[y1 ⊗ y2 ⊗ y3]: multi-linear map.

Multi-view and Persistent topics
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Dictionary Learning or Sparse Coding

Each sample is a sparse combination of dictionary atoms.

Setup

No. of dictionary elements k > observed dimensionality n.

A = [a1, . . . , ak]: dictionary elements

y ∈ R
n: Observation. Y = [y1, . . . , ym] ∈ R

n×m: Observation matrix.

Linear model: Y = AX.

Learning problem: Given Y , find A and X.

Ill-posed without further constraints

Main Assumptions

X is sparse: each column is randomly s-sparse
◮ Each sample is a combination of s dictionary atoms.

A is incoherent: max
i 6=j

|〈ai, aj〉| ≈ 0.
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∑

j xi,jaj.

Consider yi and yj s.t. they have no common dictionary atoms.

What about |〈yi, yj〉|?
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Intuitions: how incoherence helps

Each sample is a combination of dictionary atoms: yi =
∑

j xi,jaj.

Consider yi and yj s.t. they have no common dictionary atoms.

What about |〈yi, yj〉|?

Under incoherence: |〈yi, yj〉| ≈ 0.

Construction of Correlation Graph

Nodes: Samples y1, . . . , yn.

Edges: |〈yi, yj〉| > τ for some threshold τ .

How does the correlation graph help in dictionary learning?



Correlation Graph and Clique Finding

replacements

Main Insight

(yi, yj): edge in correlation graph ⇒ yi and yj have at least one
dictionary element in common.



Correlation Graph and Clique Finding

replacements
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Correlation Graph and Clique Finding

replacements

Ŝ1 Ŝ2Bad

Good

Good

Main Insight

(yi, yj): edge in correlation graph ⇒ yi and yj have at least one
dictionary element in common.

Consider a large clique: a large fraction of pairs have exactly one
element in common.

How to find such a large clique efficiently? Start with a random edge.



Result on Approximate Dictionary Estimation

Procedure

Start with a random edge (yi∗ , yj∗).

Ŝ = common nbd. of yi∗ and yj∗. If Ŝ is close to a clique, accept.

Estimate a dictionary element via top singular vector of
∑

i∈Ŝ

yiy
⊤
i .

Theorem

The dictionary A can be estimated with bounded error w.h.p. when
s = o(k1/3) and number of samples m = ω(k).

Exact estimation when X is discrete, e.g. Bernoulli.

A. Agarwal, A., P. Netrapalli. “Exact Recovery of Sparsely Used Overcomplete Dictionaries,”

Preprint, Sept. 2013.
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Exact Estimation via Alternating Minimization

So far.. approximate dictionary estimation. What about exact
estimation for arbitrary X?

Alternating Minimization

Given Y = AX, initialize an estimate for A.

Update X via ℓ1 optimization.

Re-estimate A via Least Squares.

In general, alternating minimization converges to a local optimum.

Specific Initialization: Through our previous method.

Theorem

The above method converges to the true solution (A,X) at a linear rate
w.h.p. when s < min(k1/8, n1/9) and number of samples m = Ω(k2).

A. Agarwal, A., P. Netrapalli, P. Jain, R. Tandon. “Learning Sparsely Used Overcomplete

Dictionaries via Alternating Minimization,” Preprint, Oct. 2013.



Relationship to Previous Results

Previous Results on Guaranteed Recovery

Spielman et. al. : guaranteed recovery of undercomplete dictionaries.

Arora et. al: concurrent results for approximate dictionary estimation.

Our Result

First guarantees for exact recovery of overcomplete dictionary.

Validates some of empirical success of alternating minimization.

Propose a new method for initialization.

Simple Methods for Guaranteed Recovery of Overcomplete Dictionaries



Outline

1 Introduction

2 Dictionary Learning

3 Topic Models

4 Conclusion



Two Approaches for Learning Overcomplete Models

Latent dimensionality k ≫ observed dimensionality n.

Dictionary Learning

y ∈ R
n: sample. Y ∈ R

n×m.

A = [a1, . . . , ak]: Dictionary.

X ∈ R
k×m: mixing matrix.

Linear model: Y = AX.

Sparse mixing X and
Incoherent dictionary A.

Clustering and alt. min.

Sparse Topic Models

y ∈ R
n: word. m documents.

A = [a1, . . . , ak]: Topic-word matrix.

x ∈ R
k: Topic proportions vector

Linear model: E[y|x] = Ax.

y1, y2, y3: Three words/views

E[y1 ⊗ y2 ⊗ y3]: multi-linear map.

Multi-view and Persistent topics



Probabilistic Topic Models

Observed: words. Hidden: topics.

Bag of words: order of words does not matter

Graphical model representation

y ∈ R
n: word. l words in a document.

x ∈ R
k: topic proportions in document.

Exchangeability: y1 ⊥⊥ y2 ⊥⊥ . . . |x

Word yi generated from topic zi.

Topic zi drawn from mixture x.

A(i, j) := P[y = i|z = j]: topic-word
matrix.

Linear model: E[yi|x] = Ax.
Words

Topics

Topic

Mixture

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

AAAAA

x



Formulation as Linear Models

Distribution of the topic proportions vector x

If there are k topics, distribution over the simplex ∆k−1

∆k−1 := {x ∈ R
k, xi ∈ [0, 1],

∑

i

xi = 1}.

Distribution of the words y1, y2, . . .

n words in vocabulary. If y1 is jth word, assign ej ∈ R
n

Distribution of each yi: supported on vertices of ∆n−1.

Properties

Linear Model: E[yi|x] = Ax .

Multiview model: x is fixed and multiple words (yi) are generated.
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Topic proportions vector (x)

AAA

y1

y2

y3
Word generation (y1, y2, . . .)

Moment-based estimation: co-occurrences of words in documents
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Learning Topic Models

Exchangeable Topic Model

Words

Topics

Topic

Mixture

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

AAAAA

x

Topic-word matrix

x1 x2 xk

y(1) y(2) y(n)

A

Allow for general x: model arbitrary topic correlations

Constrain topic-word matrix A: Sparsity constraints



Learning Overcomplete Representations

Latent dimensionality k and observed dimensionality n.

Undercomplete Representation

k

n

x1 x2 xk

y1 y2 yn

Overcomplete Representation

k

n

x1 x2 xk

y1 y2 yn

When are overcomplete models (k > n) learnable?
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Moments of a topic model

Linear model: E[yi|x] = Ax.

Tucker Form of Moments for Topic Models

M2 := E(y1 ⊗ y2) = AE[xx⊤]A⊤

M4 := E((y1 ⊗ y2)(y3 ⊗ y4)
⊤) = (A⊗A)E[(x⊗ x)(x⊗ x)⊤](A⊗A)⊤

Kronecker product: (A⊗A) ∈ R
n2×k2

k > n: Tucker decomposition not unique: model non-identifiable.

Identifiability of Overcomplete Models

Possible under the notion of topic persistence

Includes single topic model as a special case.
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Persistent Topic Models

Bag of Words Model

Words

Topics

Topic

Mixture

y1 y2 y3 y4 y5
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AAAAA

x

Persistent Topic Model

Words

Topics

Topic

Mixture

y1 y2 y3 y4 y5

z1 z2 z3

AAAAA

x

Single-topic model is a special case.

Persistence: incorporates locality or order of words.
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Identifiability of Overcomplete Models

Recall Form of Moments for Bag-of-Words Model

E((y1 ⊗ y2)(y3 ⊗ y4)
⊤) = (A⊗A)E[(x⊗ x)(x⊗ x)⊤](A⊗A)⊤

For Persistent Topic Model

E((y1 ⊗ y2)(y3 ⊗ y4)
⊤) = (A⊙A)E[xx⊤](A⊙A)⊤

Kronecker vs. Khatri-Rao Products

A: Topic-word matrix, is n× k.

(A⊗A): Kronecker product, is n2 × k2 matrix.

(A⊙A): Khatri-Rao product, is n2 × k matrix.



Some Intuitions

Bag-of-words Model:
(A⊗A)E[(x⊗ x)(x⊗ x)⊤](A⊗A)⊤.

Persistent Model:
(A⊙A)E[xx⊤](A⊙A)⊤.

Topic-Word Matrix A
k

n

Effective Topic-Word Matrix Given Fourth-Order Moments:

Bag of Words Model:
Kronecker Product A⊗A.

k2

n2

Not Identifiable.

Persistent Model:
Khatri-Rao Product A⊙A.

k

n2

Identifiable



Identifiability of Overcomplete Topic Models

A ∈ R
n×k: topic-word matrix.

Each topic has number of words (degree) ∈ [log n,
√
n].

Random connections in A.

Number of topics k = O(n2).

Corollary

The above topic model is identifiable from M4 when topic persistence level
is at least 2.

Learning: via ℓ1 optimization.

A. Anandkumar, D. Hsu, M. Janzamin, and S. M. Kakade. When are Overcomplete Topic

Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity,

NIPS 2013.
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Conclusion

Learning Overcomplete Representations

More flexibility in modeling, robust to noise

Exploit availability of large number of unlabelled samples, e.g.
speech, vision etc

Dictionary Learning/Sparse Coding

Each sample is a sparse combination of dictionary atoms.

Guaranteed learning through clique finding and alternating
minimization.

Learning Sparse Overcomplete Topic Models

Learning using higher order moments

Identifiability under persistence of topics

Learning via ℓ1 optimization.
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