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Abstract

The simplicial condition and other stronger conditions that imply it have recently
played a central role in developing polynomial time algorithms with provable
asymptotic consistency and sample complexity guarantees for topic estimation
in separable topic models . Of these algorithms, those that rely solely on the sim-
plicial condition are impractical while the practical ones need stronger conditions.
In this paper, we demonstrate, for the first time, that the simplicial condition is
a fundamental, algorithm-independent, information-theoretic necessary condition
for consistent separable topic estimation. Furthermore, under solely the simplicial
condition, we present a practical algorithm whose computational complexity is
O(MNK + WK + K2), where M,N,K are the number of documents, words
per document, and topics respectively. The algorithm is based on random pro-
jections which consistently detects all novel words of all topics using only up to
second-order empirical word moments. This algorithm is amenable to distributed
implementation making it attractive for “big-data” scenarios involving a network
of large distributed databases.

1 Introduction

A series of powerful practical algorithms for probabilistic topic modeling have emerged in the past
decade since the seminal work on Latent Dirichlet Allocation (LDA) [1]. This has propelled topic
modeling into a popular tool for learning latent semantic structures in large datasets. Formally, topic
models consider a collection of M documents, each modeled as being generated by N iid drawings
of words from an unknown W × 1 document word-distribution vector over a vocabulary of size
W . By positing K latent topics as distribution vectors over the vocabulary, each document word-
distribution vector arises as a probabilistic mixture of the K topic vectors. The topic proportions
for documents are assumed to be sampled in an iid manner from some prior distribution such as the
Dirichlet distribution in LDA.

For future reference, let β denote the unknown W ×K topic matrix whose columns are the K latent
topics, θ the K ×M probabilistic topic-weight matrix whose columns are topic proportions of the
M documents, and let X denote the W ×M empirical word-by-document matrix whose columns
are word-frequency vectors of the M documents. Typically, W ≫ K .

While the prevailing approach is to find a maximum likelihood fit of X to the generative model
through approximations or heuristics, a recent trend has been to develop topic estimation algorithms
with provable guarantees under suitable additional conditions [2, 3, 4, 5]. Chief among them is the
so-called topic separability condition [6, 2, 4]:

Condition 1. (Topic separability) A topic matrix β ∈ IRW×K is separable if for each topic k, there
exists some word i such that βi,k > 0 and βi,l = 0, ∀ l 6= k.

The words that are unique to each topic, referred to as “novel words”, are key to the recovery of
topics. However, as implicitly suggested in [6], and illustrated in Fig. 1, separability alone does not
guarantee the uniqueness of recovery. Therefore to develop algorithms with provable (asymptotic)
consistency guarantees (N fixed, M → ∞), a number of recent papers have imposed additional
conditions on the prior distribution of the columns of θ. This is summarized in Table 1 where a
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Figure 1: Example showing that separability alone does not guarantee uniqueness of decomposition. Here,
β1θ = β2θ are two valid decompositions where β1 and β2 are both separable.

Table 1: Summary of related work on separabile topic models.
Reference Condition Consistency (N fixed, Sample Computational

on R
′ M →∞) proved? complexity? complexity

[2] Simplicial Yes Yes Poly., impractical

[7] Simplicial No No Poly., practical

[8] Simplicial No No Poly., practical
[3] Full-rank Yes Yes Poly., practical

[4] “Diagonal dominance” Yes Yes Poly., practical

and R are, respectively, the expectation and correlation matrix of the prior on the columns of θ and
R

′ := diag(a)−1
R diag(a)−1 is the “normalized” correlation matrix. Without loss of generality

we can assume that each component of a is strictly positive. Among these additional conditions,
the simplicial condition (cf. Sec. 2) on R

′ is the weakest sufficient condition for consistent topic
recovery that is available in the literature. However, the existing approaches either lack statistical
guarantees or are computationally impractical. Algorithms with both statistical and computational
merits have been developed by imposing stronger conditions as in [3, 4]. Hence the natural questions
that arise in this context are:

(a) What are the necessary and sufficient conditions for separable topic recovery?

(b) Do there exist algorithms that are consistent, statistically efficient, and computationally
practical under these conditions?

In this paper, we first show that the simplicial condition on the normalized correlation matrix R
′

is an algorithm-independent, information-theoretic necessary condition for consistently detecting
novel words in separable topic models. The key insight behind this result is that if R

′ is non-
simplicial, we can construct two distinct separable topic models with different sets of novel words
which induce the same distribution on the observations X. In Sec. 3, we answer the second question
in the affirmative by outlining a random projection based algorithm and providing its statistical and
computational complexity. Due to space limitations, the details of this novel algorithm and the
proofs of the claimed sample and computational complexity will appear elsewhere.

2 Simplicial Condition

Similar to [2], we have

Definition 1. A matrix A is simplicial if ∃γ > 0 such that each row of A is at a Euclidean distance
of at least γ from the convex hull of the remaining rows.

For estimating a separable topic matrix β, the simplicial condition is imposed on the normalized
second order moment R′. More precisely:

Condition 2. (Simplicial Condition) The topic model is simplicial if R′ is simplicial, i.e., ∃γ > 0
s.t. every row of R′ is at a distance of at least γ from the convex hull of the remaining rows of R′.

Algorithms with provable performance guarantees that exploit the separability condition typically
consist of two steps: (i) novel word detection and (ii) topic matrix estimation. We will only focus on
the detection of all novel words since the detection problem is in itself important in many applica-
tions, e.g., endmember detection in hyperspectral, genetic, and metabolic datasets, and also because
the second estimation step is relatively easier once novel words are correctly identified. Our first
main result is contained in the following lemma:

Lemma 1. (Simplicial condition is necessary) Let β be separable and W > K . If there exists
an algorithm that can consistently identify all the novel words of all the topics, then its normalized
second order moment R′ is simplicial.
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Proof. The proof is by contradiction. We will show that if R′ is non-simplicial, we can construct
two topic matrices β1 and β2 whose sets of novel words are not identical and yet X has the same
distribution under both models. This will imply the impossibility of consistent novel word detection.

Suppose R
′ is non-simplicial. Then we can assume, without loss of generality, that its first row is

within the convex hull of the remaining rows, i.e., R′
1 =

∑K

j=2 cjR
′
j , where R

′
j denotes the j-th

row of R′, and c2, . . . , cK ≥ 0,
∑K

j=2 cj = 1 are convex weights. Compactly, e⊤R′
e = 0 where

e := [−1, c2, . . . , cK ]⊤. Recalling that R′ = diag(a)−1
R diag(a)−1, where a is a positive vector

and R = E(θiθi
⊤) with θi denoting any column of θ, we have

0 = e
⊤
R

′
e = (diag(a)−1

e)⊤ E(θiθi
⊤)(diag(a)−1

e) = E(‖θi
⊤ diag(a)−1

e‖2),

which implies that ‖θi
⊤ diag(a)−1

e‖
a.s.
= 0. From this it follows that if we define two non-negative

row vectors b1 := b
[
a−1
1 , 0, . . . , 0

]
and b2 = b

[
(1− α)a−1

1 , αc2a
−1
2 , . . . , αcKa−1

K

]
, where b >

0, 0 < α < 1 are constants, then b1θi
a.s.
= b2θi.

Now we construct two separable topic matrices β1 and β2 as follows. Let b1 be the first row and b2

be the second in β1. Let b2 be the first row and b1 the second in β2. Let B ∈ IRW−2×K be a valid
separable topic matrix. Set the remaining (W − 2) rows of both β1 and β2 to be B(IK −diag(b1+
b2)). We can choose b to be small enough to ensure that each element of (b1 + b2) is strictly less
than 1. This will ensure that β1 and β2 are column-stochastic and therefore valid separable topic
matrices. Observe that b2 has at lease two non-zero components. Thus, word 1 is novel for β1 but
non-novel for β2.

By construction, β1θ
a.s.
= β2θ, i.e., the distribution of X conditioned on θ is the same for both

models. Marginalizing over θ, the distribution of X under each topic matrix is the same. Thus no
algorithm can distinguish between β1 and β2 based on X.

Our second key result is the sufficiency of the simplicial condition for novel word detection:

Lemma 2. Assume that topic matrix β is separable. If R
′ is simplicial, then there exists an al-

gorithm whose running time is O(MNK + WK + K2), that only makes use of empirical word
co-occurrences and consistently recovers the set of all novel words for K topics as M →∞.

This is a consequence of Lemma 3 in Sec. 3 where an algorithm based on random projections is
described that can attain the claimed performance.

We conclude this section with two conditions that each imply the simplical condition.

Proposition 1. Let R′ be the normalized topic correlation matrix matrix. Then, (i) R′ is diagonal
dominant, i.e., ∀i, j, i 6= j, R′

i,i − R
′
i,j > 0 =⇒ R

′ is simplicial. (ii) R′ is full rank =⇒ R
′ is

simplicial. Furthermore, the reverse implications in (i) and (ii) do not hold in general.

The proof of the above proposition is omitted due to space limitations but is straightforward. This
demonstrates that the diagonal dominant condition in [4] and the full-rank condition in [3] are both
stronger than the simplicial condition.

3 Random Projection Algorithm

The pseudo-code of an algorithm that can achieve the performance claimed in Lemma 2 is provided
below (cf. Algorithm 1). Due to space limitations, we only explain the high-level intuition which is

geometric. Let X̃ and X̃
′ be obtained by first splitting each document into two independent copies

and then scaling the rows to make them row-stochastic. The key idea is that if R′ is simplicial, then

as M →∞, with high probability, the rows of X̃′
X̃

⊤ corresponding to novel words will be extreme
points of the convex hull of all rows. This suggests finding novel words by projecting the rows
onto an isotropically distributed random direction, P times, and then selecting the K rows which
maximize the projection value most frequently. We summarize the statistical and computational
properties of this algorithm in Lemma 3:

Lemma 3. Let β be separable and R
′ be simplicial with constant γ. Then Algorithm 1 will output

all novel words of all K topics consistently as M →∞ and P →∞. Furthermore, ∀δ > 0, if

M ≥ max

{
c1
log(3W/δ)

d2φ2η4
, c2

W 2 log(2W/q∧) log(3W/δ)

ρ2q2∧φ2η4

}
and P ≥ c3

log(3W/δ)

q2∧
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Algorithm 1 Random Projection Algorithm for Novel Words Detection

Input: X̃, X̃′, d, K , P ⊲ d : some model constant; assumed known for simplicity
Output: Set of novel words I

1: C←MX̃
′
X̃

⊤

2: ∀i, Nbd(i)← {j : Ci,i − 2Ci,j + Cj,j ≥ d/2}, ⊲ Exclude novel words of the same topic as i
3: for r = 1, . . . , P do ⊲ Random Projections
4: Sample ur ∼ N (0, IW )

5: p̂
(r)
i ← I{max

j∈Nbd(i) Cjur ≤ Ciur} , i = 1, . . . ,W ⊲ The max. projected on ur

6: end for
7: p̂i ←

1
P

∑P

r=1 p̂
(r)
i , i = 1, . . . ,W ⊲ Frequency of being a maximizer

8: k ← 1,i← 2, and I ← argmaxw p̂w
9: while k ≤ K do ⊲ Extract most frequent maximizers

10: j ← the index of the ith largest value among p̂1, . . . , p̂W
11: if j ∈

⋂
l∈I Nbd(l) then

12: I ← I ∪ {j}, k ← k + 1 ⊲ Not the novel words of the same topic as i
13: end if
14: i← i+ 1
15: end while

then Algorithm 1 fails with probability at most δ, where c1 = c2 = 100, c3 = 16 are absolute
constants, φ = mini,j aiaj/Ri,j , η = min1≤w≤W [βa]w, ρ = γ(1 − maxβ′

w,k
6=1 β

′
w,k) where

β′ = diag−1(βa)β diag(a), d = ρ2/λ∨ where λ∨ = max eig(R′) , and q∧ is the minimum
“normalized solid angle” of the extreme point of the convex hull of the rows of β′

R
′β′⊤. Moreover,

the running time of Algorithm 1 is O(MNP +WP +K2).

As summarized in Lemma 3, the computational complexity of Alg. 1 is linear in terms of M,N,W
and quadratic in terms of K , which typically stays fixed and small. This is more efficient than the
best known provable algorithms in [2, 3, 4]. It turns out that the time complexity of steps 1 through 6
isO(MNP +WP ) since each column of X and X

′ has at most N non-zero elements and typically
N ≪ W . The sample complexities for M and P are both polynomial in terms of W, log(δ), and
other model parameters, which are comparable to the current state-of-the-art approaches. It turns out
that Algorithm 1 is also amenable to distributed implementation since it only involves aggregating
the counts of rows that maximize projection values.

4 Discussion

The necessity of the simplicial condition we proved in this paper is information-theoretic and
algorithm-independent. It is also a sufficient condition. Although widely used priors, e.g., Dirichlet,
satisfy the stronger full-rank and diagonal dominant conditions, in certain types of datasets, e.g.,
Hyperspectral Imaging, these may not hold [4]. This paper only focused on detecting distinct novel
words of all topics. In general, the simplicial condition is not sufficient for consistently estimating
the topic matrix. It can be shown that the full-rank condition is sufficient but not necessary.
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