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Abstract

Multi-labeled corpora, where each document is tagged with a set of labels, are ubiq-
uitous. When the number of unique labels in the dataset is large, there are naturally
some dependencies among the labels. In this paper, we propose TREELAD—a
hierarchical topic model to capture these label dependencies using a tree-structured
topic hierarchy. We apply TREELAD on a real-world dataset and show some
promising empirical results.

1 Introduction

The past decade has seen probabilistic topic models being used to study the thematic structure of
documents in a wide range of forms including news, blogs, web pages etc [1]. Standard unsupervised
topic models such as latent Dirichlet allocation (LDA) [2] aim to discover a set of topics from input
data which only consists of a set of documents. In many settings, documents are associated with
additional information, which motivates work to simultaneously model the documents’ text with their
continuous response variables [3, sLDA] or their categorical labels [4, DiscLDA].

In this work, we focus on modeling multi-labeled data, in which each document is tagged with a
set of labels. These data are ubiquitous. Web pages are tagged with multiple directories1, books are
labeled with different categories or political speeches are annotated with multiple issues2. Previous
topic models on multi-labeled data focus on cases where the number of labels is relatively small and
labels are assumed independent [5, 6, 7]. Unfortunately, in many real-world examples, the number of
labels range from hundreds to thousands, which often makes independence assumptions too strong.
Recent work captures the dependency among labels by projecting them onto some latent space [8, 9].

However, when the number of labels is very large, simply projecting the labels into a latent space may
not be enough. Understanding an unwieldy label space requires discovering a structure within the
labels. In this work, we attempt to capture the dependence between labels using a learned hierarchy.
Our model, TREELAD, learns from label co-occurence and word usage to discover a hierarchy of
topics associated with user-generated labels.

2 Model

We introduce TREELAD—a tree-based label dependency topic model to capture the hierarchy of
topics from a set of multi-labeled documents. The inputs of TREELAD consist of a set of D
documents {wd}, each tagged with a set of labels td. The number of unique labels is K and the
word vocabulary size is V . TREELAD associates each of the K labels with a topic—a multinomial
distribution over the vocabulary, and uses a tree-structure to capture the relationships among them.
Each document is generated by repeatedly traversing the topic tree from the root downward to a node
in the tree, whose associated topic is used to generated the corresponding word token. Figure 1 shows
the plate diagram notations of TREELAD, together with its generative process.

1Open Directory Project (http://www.dmoz.org/)
2Policy Agenda Codebook (http://policyagendas.org/)
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1. Create the label graph G and generate a tree T from G (See § 2.1)
2. For each node k ∈ [1,K] in T

(a) If k is the root, draw background topic φk ∼ Dir(β)
(b) Otherwise, draw topic φk ∼ Dir(γ · φσ(k))

3. For each document d ∈ [1, D] having labels td
(a) Define a subtree Td ≡ R(T , td) (See § 2.3)
(b) For each node k in Td

i. Draw a multinomial over k’s children θd,k ∼ Dir(α)
ii. Draw a binary switching variable ωd,k ∼ Beta(m,π)

(c) For each word n ∈ [1, Nd]
i. Draw zd,n ∼ B(θd,ωd) (See § 2.2)

ii. Draw wd,n ∼ Mult(φzd,n)

Figure 1: The generative process with plate diagram notations of our model TREELAD.

2.1 Tree generation

We assume that we are given a directed complete graph between labels i and j. The edge between
these two labels is the conditional probability of the labels, wi,j = P (i | j) = Ci,j/Cj . We also
assume an additional “background” node. Edges to the background node have weight 0 and edges
from the background node to label i are weighted with the marginal probability of node i. Because
each non-root node in the tree corresponds to exactly one label, the tree has K + 1 nodes. We model
the tree T generated from this weighted graph as proportional to the probability of the constituent
edges, p(T ) ∝

∏
(i,j)∈T wi,j . Because the background node has no non-zero incomming edges, it

must be the root node of the resulting tree. Given only this information (ignoring the content of the
documents), we can construct the maximum probability tree by running Chu-Liu/Edmonds’ algorithm
to find the maximum spanning tree starting at the root node.

2.2 Tree-structured Dirichlet, truncated stick breaking process

Given T , we will stochastically assign each token in every document to a node in the tree. This is
done by a tree-structured Dirichlet, truncated stick breaking process, denoted by B. For a document
d, we associate each node k in the tree with (1) a stochastic switching variable ωd,k ∼ Beta(m,π)
and (2) a multinomial distribution over k’s children θd,k ∼ Dirichlet(α). The detailed process is as
follows: a token in document d traverses the tree from the root. Suppose that the token reaches a node
k, it will stop at this node with probability ωd,k or move to one of k’s child nodes with probability
1− ωd,k. If moving on, the token will choose a child node k′ of k with probability θd,k,k′ .

This process provides a prior distribution over all nodes in a tree. The process is, in spirit, similar to
the TSSB prior [10] in which a datum traverses downward from the root and can stop at any node
in the tree. However, since the number of nodes in our tree is fixed, instead of using stick breaking
processes for distributions over the depth and width of the tree, we use truncated stick breaking
processes and Dirichlet distributions respectively.

2.3 Restricted subtrees

With the tree T and the prior distribution B over all its nodes, we can assign each token to a node by
first computing the probability of this token being at every node in the tree, and then sampling from
this distribution. However, doing so is inefficient given the large number of labels. To speed things
up and to leverage the information from the labels, for each document we only consider assigning its
tokens to a subset of nodes, called restricted subtree Td, based on the set of labels of the document.
For a document d having labels td, we consider three ways of constructing Td:

1. Exact paths (T 1
d ): contains nodes on the paths from the root to document’s label nodes td.

2. Inside subtrees (T 2
d ): contains nodes in T 1

d and all nodes in the subtrees rooted at the
document’s label nodes td.

3. Inside-outside subtrees (T 3
d ): contains nodes in T 2

d and all nodes in the subtrees rooted at
the first-level nodes on paths from the root to document’s label nodes td.
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3 Inference

Given a set of documents with observed words w and labels t, the inference task is to find the
posterior distribution over the latent variables. We approximate TREELAD’s posterior by collapsing
out θ and ω, alternating between (1) sampling node assignments for each token zd,n and (2) sampling
topics φk. Currently, we fix the tree structure by running Chu-Liu/Edmonds’ algorithm to find
the maximum spanning tree using only label co-occurrence information as described in § 2.1. In
principle, in order to incorporate the word usage, the tree should be updated during inference to take
into account the word distribution at each tree node. We leave this as our future work.

3.1 Sampling zd,n

The probability of assigning a token wd,n to a node specified by a path P = (root, · · · , k) from the
root to a node k is P (zd,n = k | rest) ∝

N−d,nd,k +mπ

N−d,nd,≥k + π

∏
i∈P\{k}

N−d,nd,>i + (1−m)π

N−d,nd,≥i + π
·

∏
j∈P\{root}

N−d,nd,≥j + α∑
j′∈Cd,σ(j)(N

−d,n
d,≥j′ + α)

(1)

where Nd,k is the number of tokens in document d assigned to node k, Nd,>k is the number of
tokens in document k assigned to any nodes in the subtree rooted at k excluding k. We define
Nd,≥k ≡ Nd,k + Nd,>k. Conventionally, superscript −d,n denotes counts excluding wd,n. We
also use σ(k) to denote the parent node of k and Cd,k to denote the set of children of k in the
document-specific tree Td.

3.2 Sampling topics φk

The topics in our tree form a cascaded Dirichlet-multinomial chain where the topic φk at a node k
is draw from a Dirichlet distribution with the mean vector being the topic φσ(k) at the parent node
σ(k). In our inference process, we explicitly sample the topic at each node, following the approach
described in [11]. More specifically, for a node k, we sample φk ∼ Dirichlet(mk + m̃k + γ · φσ(k))
wheremk is the word type count vector at node k. In other words, mk,v is the number of times that
word type v is assigned to node k. m̃k is a smoothed count vector in which m̃k,v captures the number
of times node k is used when sampling v at any of k’s children nodes. m̃k can be approximated by
sampling from an Antoniak distribution [12, 13] or summing over counts from all k’s children using
minimal/maximal path assumptions [14, 15]. In this work, for efficiency we choose to approximate
the counts using the two path assumptions. More specifically, the smoothed count vector m̃k at node
k will be the sum of the propagated count vectors from all k’s children, which are defined as follow:

• Minimal path: each child node i of k will propagate a value of 1 to k if mi,v > 0.
• Maximal path: each child node i of k will propagate its full count vectormi to k.

The sampling process starts from the bottom of the tree to compute the smoothed count vectors for all
nodes in the tree. After reaching to root node, we perform the actual sampling in a top-down manner.

4 Empirical Evaluations

We run TREELAD on a set of congressional bill descriptions that are discussed during the 112th U.S.
Congress, each of which is labeled with a set of subjects. The dataset is collected from https://
www.govtrack.us/. After performing standard pre-processing steps such as stemming, removing
stop words, removing short documents (having less than 5 tokens) etc, we have 12,299 documents
with 5,000 words in the vocabulary and 281 unique labels. We run our Gibbs sampler for 1,000
iterations. Figure 2 shows a small portion of the label tree that is learned by our TREELAD using
minimal path assumption and inside-outside subtrees.

5 Conclusion

In this paper, we propose TREELAD, a hierarchical topic model for multi-labeled documents.
TREELAD aims to capture the dependency between labels using a tree-structure hierarchy. We
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Figure 2: A portion of the label tree learned by TREELAD from a collection of congressional bill
descriptions during the 112th U.S. Congress

present a Gibbs sampling inference algorithm to approximate the model’s posterior distribution.
Preliminary experiments on a set of multi-labeled congressional bill descriptions show promising
results and the learned label hierarchy captures qualitative relationships between labels in the data.
We are working toward evaluating TREELAD more thoroughly on the quality of the learned hierarchy
as well as on other downstream applications such as multi-label document classification.
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