
Robust Evaluation of Topic Models

James Foulds Padhraic Smyth
Department of Computer Science
University of California, Irvine

{jfoulds, smyth}@ics.uci.edu

Abstract

Statistical topic models such as latent Dirichlet allocation (LDA) have become
enormously popular in the past decade, with dozens of extensions being proposed
each year in conferences such as NIPS, ICML, KDD, EMNLP, and others. Test
set perplexity is frequently the method of choice used in these papers for com-
paring new models with older variants, yet relatively little attention has been paid
(with a few notable exceptions) to the details of how these perplexity values are
computed. In this paper we take a close look at the how to accurately compare
the predictive performance of different topic models, introducing an extension of
annealed importance sampling (as first proposed by [5]) that yields significantly
more reliable estimates of model differences relative to current methods.

1 Introduction

When proposing a new topic model it is important to evaluate its performance. In the context of
unsupervised learning the standard approach (in machine learning at least) for evaluating a statistical
model is to compute the probability of held-out data.1 In the case of topic models, for a held-out

document d with word vector w(d), and given point estimates of topics Φ and the Dirichlet prior

α(d) (if learned), this corresponds to to computing the quantity Pr(w(d)|Φ, α(d)). This is intractable
to compute and difficult to reliably approximate. A wide variety of approximation strategies are
proposed and discussed in papers such as [5], [1] and [4]. Although the methods provide a significant
advance over naive approaches, it is clear that the reliable, efficient evaluation of topic models
remains an open problem. A simpler alternative is to use the method of document completion,
which is easier to estimate, but is not the gold standard prediction task that we would ideally like. For
example, document completion can obscure small differences between models based on the prior,
such as differences between different Dirichlet multinomial regression models, causing difficulty in
evaluating the relative performance of such models.

In this paper we propose a new method for comparing the predictive performance of any topic
model relative to a baseline model. The strategy is based on the annealed importance sampling
(AIS) method as applied to topic model evaluation in [5]. The key idea is to focus on the ratio of
the likelihoods of two models rather than computing the likelihoods of each model separately. This
strategy results in a much more reliable estimate of the relative performance of the models, with
lower variance across samples than previous approaches. As a bonus, by computing the reciprocal
ratio using the same technique, we can in some cases detect convergence failures of the sampler.

1Although a number of techniques alternative to this prediction task have been proposed, such as measures
of topic coherence, posterior predictive checks and human evaluations of topic models (citations omitted for
space), prediction of held-out documents remains an essential evaluation technique.
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2 Background

As in [5], we focus on the computation of P (w(d)|Φ, α(d)), the likelihood of a held out document d.
This quantity (or perplexity, which is a function of it) can be used to evaluate a point estimate of the
topics Φ, or as an inner loop to evaluate Bayesian evaluation metrics such as the posterior predictive
probability of held out documents or the marginal likelihood. It is in general intractable to compute

P (w(d)|Φ, α(d)) directly, as it involves either an intractable sum or an intractable integral. Note
that we allow the Dirichlet prior to be document dependent, to account for topic models such as
Dirichlet multinomial regression [2], which allows the prior to depend on each document’s features.

Notationally, in this work, when we write P (w(d)|Φ, α(d)), we are implicitly conditioning on any

features or learned parameters used to compute α(d).

2.1 Annealed Importance Sampling

Annealed Importance Sampling (AIS) [3] is a general technique for estimating an expectation of
some function of a variable x with respect to an intractable distribution of interest p0. Consider
another distribution pn (which is typically easy to sample from) and a sequence of “intermediate”
distributions pn−1, . . . , p1 leading from pn to p0. AIS works by annealing from pn towards p0 by
way of the intermediate distributions, and using importance weights to correct for the fact that an
annealing process was used instead of sampling directly from p0.

Assume that for each intermediate distribution we have a Markov chain with transition operator
Ti(x, x

′) which is invariant to that distribution. We need to sample from these Markov chains, and
for each pi be to able to evaluate some function fi which is proportional to it. Similarly to traditional

importance sampling, AIS produces a collection of samples x(1), . . . , x(S) with associated impor-

tance weights w(1), . . . , w(S). As for importance sampling, the expectation of interest is estimated
using the samples, weighted by the importance weights.

The strategy for drawing each sample x(i) is to begin by drawing a sample xn−1 from pn, then
drawing a sequence of points xn−2, . . . , x0 which “anneal” towards p0. Each of the remaining xj ’s

in the sequence are generated from xj+1 via Tj . Importance weights w(i) are computed by viewing
(x0, . . . , xn−1) as an augmented state space, and performing importance sampling on this new state
space. The above procedure is used as a proposal distribution Q for importance sampling from
another distribution P :

Q(x0, . . . , xn−1) ∝ fn(xn−1)

1∏

s=n−1

Ts(xs, xs−1), P (x0, . . . , xn−1) ∝ f0(x0)

n−1∏

s=1

T̃s(xs−1, xs) ,

(1)

where T̃s(x, x
′) = Ts(x

′, x)
fj(x

′)
fj(x)

is the reversal of the transition defined by Ts. This leads to

importance weights for each of the samples,

w(i) =
P (x0, . . . , xn−1)

Q(x0, . . . , xn−1)
=

n−1∏

s=0

fs(xs)

fs+1(xs)
. (2)

Note that the marginal probability of x0 under P is p0(x0), so after letting x(i) = x0 the procedure
correctly carries out importance sampling from p0. AIS also provides an estimate for the ratio of
normalizing constants for f0 and fn. The normalizing constant for P is the same as the normalizing
constant for f0, and the normalizing constant for Q is the same as the normalizing constant for fn,

and so the average of the importance weights,
∑

w(i)

N
, converges to

∫
f0(x)dx∫
fn(x)dx

.

2.2 AIS for Topic Models

Wallach et al. [5] describe the AIS procedure, as applied to LDA. The likelihood of a test doc-
ument given a topic model can be estimated using this strategy of exploiting AIS to estimate a

normalization constant, operating on the latent topic assignments z(d) for the document.2 We can

2The derivation here differs slightly from that of Wallach et al. [5]. The present derivation suggests that the
procedure described in [5] should be repeated many times, returning the average of the resulting values.
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set f0 = Pr(w(d), z(d)|φ, α(d)), fn = Pr(z(d)|α(d)), with intermediate distributions fj = f
βj

0 fn
and the transition operators Tj being the Gibbs sampler for fj . The ratio of normalizing constants is

∑
w(i)

N
≈

∑
z(d) Pr(w(d), z(d)|φ, α(d))∑

z(d) Pr(z(d)|α(d))
=

Pr(w(d)|φ, α(d))

1
= Pr(w(d)|φ, α(d)) . (3)

3 Robust Comparisons of Topic Models

The above method computes the ratio of the desired quantity Pr(w(d)|φ, α(d)) and a quantity which
equals one, so stochastic noise is introduced due to the denominator, even though this is a constant.
The prior may also in many cases be very different from the posterior, leading to high variance.

Furthermore, the most common evaluation scenario is model comparison—we want to determine
whether a particular model (model 1) performs better at predicting held-out documents than a base-
line method (model 2) such as vanilla LDA. Thus, the real quantity of interest is the relative log-
likelihood scores of the model and the baseline:

logPr(w(d)|φ(1), α(d,1))− logPr(w(d)|φ(2), α(d,2)) = log
Pr(w(d)|φ(1), α(d,1))

Pr(w(d)|φ(2), α(d,2))
. (4)

To compute this, we must perform the AIS procedure once for each model, incurring the
stochastic error twice. Given that the procedure is already designed to compute a ratio,
to avoid these issues we propose to instead use AIS to compute Equation 4 directly. Let

f0(z
(d)) = Pr(w(d), z(d)|φ(1), α(d,1)), fn(z

(d)) = Pr(w(d), z(d)|φ(2), α(d,2)), fs(z
(d)) =

f0(z
(d))βsfn(z

(d))1−βs and the transition operator be the Gibbs sampler. We have importance
weights

w(i) =

n−1∏

s=0

Pr(w(d), z
(d)
s |φ(1), α(d,1))βsPr(w(d), z

(d)
s |φ(2), α(d,2))1−βs

Pr(w(d), z
(d)
s |φ(1), α(d,1))βs+1Pr(w(d), z

(d)
s |φ(2), α(d,2))1−βs+1

=

n−1∏

s=0

Pr(w(d), z
(d)
s |φ(1), α(d,1))τ

Pr(w(d), z
(d)
s |φ(2), α(d,2))τ

, (5)

assuming βs − βs+1 = τ ∀s. Observe that the same z assignments are used for the numerator and
denominator in each of the ratios in Equation 5, further reducing the variance of the estimate relative
to the standard AIS strategy. Finally, the desired quantity can be estimated via

Pr(w(d)|φ(1), α(d,1))

Pr(w(d)|φ(2), α(d,2))
≈

∑ w(i)

N
. (6)

To implement this method we need to draw initially from fn(z
(d)), which we accomplish via Gibbs

sampling. Note that the sampler is still correct if the initial Gibbs sampler fails to converge, although

the variance will be higher. Furthermore, these initial samples from fn(z
(d)) need not be indepen-

dent for the procedure to work, although we may choose to run independent chains if the cost of
burn-in is deemed to be less than time wasted due to running the annealing on correlated samples.

3.1 Document Completion

Suppose we would instead like to compare the performance of the models on a document completion

task, where we observe some portion of a document w(d,a) and the goal is to predict the remainder

of the document w(d,b). In this case, we let f0(z
(d)) = Pr(w(d,b), z(d)|w(d,a), φ(1), α(d,1)) and

fn(z
(d)) = Pr(w(d,b), z(d)|w(d,a), φ(2), α(d,2)). By a similar argument, we can estimate

Pr(w(d,b)|w(d,a), φ(1), α(d,1))

Pr(w(d,b)|w(d,a), φ(2), α(d,2))
≈

∑ w(i)

N
, where (7)

w(i) =

n−1∏

s=0

Pr(w(d), z
(d)
s |φ(1), α(d,1))τ

Pr(w(d), z
(d)
s |φ(2), α(d,2))τ

×
Pr(w(d,a)|φ(2), α(d,2))

Pr(w(d,a)|φ(1), α(d,1))
. (8)
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Figure 1: Experimental results

These importance weights consist of two terms: (1) the importance weights for the ratio of likeli-
hoods of the entire document, computed exactly as in the previous section, and (2) the reciprocal
ratio, computed on just the observed portion of the document. Note that (1) is independent of which
portion of the document is observed, which means that the corresponding samples need only be
computed once if we vary the observed portion. The term (2) can be computed using the procedure

above, by reversing models 1 and 2 and only executing the sampler on the observed portion w(d,a).

3.2 Detecting Convergence Failures

AIS can fail if the annealing fails to converge to a high-probability state. This may be very difficult
to detect. However, in our case we can interchange f0 and fn in our AIS strategy to compute the
reciprocal of the desired ratio, and compare the reciprocal of this to our estimate. If these two values
are wildly different, then we will know that the annealing has failed to converge.

4 Experiments

To evaluate the techniques, we performed a held-out prediction experiment on a corpus of 1370
articles from the NIPS conference, holding out 130 documents for testing. We learned topics via
Gibbs sampling, and then created perturbed versions of them by taking a convex combination of
the learned topics Φ and random topics, with 5% of the weight going to the random topics. Ratios
of the perplexities for the two models were computed with both cheap (1 importance sample, 100
temperatures) and expensive (100 importance samples, 1000 temperatures) runs. The proposed
method (Figure 1, right) remained accurate when on a budget, predicting that the unperturbed topics
were best for 95% of the documents, compared to 52% for the standard method (Figure 1, left).

5 Conclusions

We have introduced a new method for evaluating topic models. The results are aligned with theoret-
ical intuition, showing that the method is much more robust than previous methods at comparing the
relative performance of the models. We are currently performing more comprehensive experiments,
including exploring the trade-offs with respect to the particle filtering approaches of [4] and [5].
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