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Abstract

This paper introduces two models – Doubly Supervised Latent Dirichlet Allocation (DSLDA) that makes
use of both shared latent and supervised topics to accomplish multitask learning (MTL) and Active Doubly
Supervised Latent Dirichlet Allocation (Act-DSLDA) that integrates MTL and active learning in the same
framework. Experimental results on both document and image classification show that integrating MTL and
active learning along with shared latent and supervised topics is superior to other methods which do not use
all of these components.

1 Introduction
Research in computer vision for designing an automated object detector has primarily been focused on either gathering large
datasets of web images [1, 2] or by formulating new algorithms that can reduce the degree of human intervention in the
learning process. In one of the learning methodologies, shared attributes, abstract descriptors of object properties [3, 4, 5] are
used to serve as an intermediate layer in a classifier cascade. If the shared attributes transcend object class boundaries, such
a classifier cascade is beneficial for transfer learning [6]. Another group of researchers have formulated methods based on
active learning for reducing the expense of human annotations where the system can request labels for the most informative
examples [7, 4]. In this paper, our objective is to combine these two orthogonal approaches in order to leverage the benefits
of both – learning from a shared feature space and making active queries.

2 Related Work
Unsupervised LDA has been extended to account for supervision. In Labeled LDA (LLDA [8]), the primary objective is
to build a model of the words that indicate the presence of certain topic labels. Some other researchers [9, 10, 11] assume
that supervision is provided for a single response variable to be predicted for a given document. In Maximum Entropy
Discriminative LDA (MedLDA) [10], the objective is to infer some low-dimensional (topic-based) representation of documents
which is predictive of the response variable. Transfer learning allows the learning of some tasks to benefit the learning of
others through either simultaneous [12] or sequential [13] training. In multitask learning (MTL [12]), a single model is
simultaneously trained to perform multiple related tasks (e.g., see [6, 14]). Finally, there has been some effort to integrate
active and transfer learning in the same framework [15, 16, 17] . However, none of these approaches deal with topic models
or query over both supervised topic labels and class labels

3 Doubly Supervised Latent Dirichlet Allocation (DSLDA)
Assume we are given a training corpus consisting of N documents belonging to Y different classes (where each document
belongs to exactly one class and each class corresponds to a different task). Further assume that each of these training
documents is also annotated with a set of K2 different topic “tags” (henceforth referred to as “supervised topics”). The
objective is to train a model using the words in a data, as well as the associated supervised topic tags and class labels, and then
use this model to classify completely unlabeled test data for which no topic tags nor class labels are provided. The DSLDA
model is now described below.
• For the nth document, sample a topic selection probability vector θn ∼ Dir(αn), where αn = Λnα and α is the parameter
of a Dirichlet distribution of dimension K, which is the total number of topics. The topics are assumed to be of two types –
latent and supervised, and there are K1 latent topics and K2 supervised topics. Therefore, K = K1 + K2. Latent topics are
never observed, while supervised topics are observed in training but not in test data. Henceforth, in each vector or matrix with
K components, it is assumed that the first K1 components correspond to the latent topics and the next K2 components to the
supervised topics. Λn is a diagonal binary matrix of dimension K ×K. The kth diagonal entry is unity if either 1 ≤ k ≤ K1

or K1 < k ≤ K and the nth document is tagged with the kth topic. Also,α = (α1,α2) whereα1 is a parameter of a Dirichlet
distribution of dimension K1 and α2 is a parameter of a Dirichlet distribution of dimension K2.
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• For the mth word in the nth document, sample a topic znm ∼ multinomial(θ′n), where θ′n = (1 −
ε){θnk}k1k=1ε{Λn,kkθnk}Kk=1+k1

. This implies that the supervised topics are weighted by ε and the latent topics are weighted
by (1−ε). Sample the word wnm ∼ multinomial(βznm

), where βk is a multinomial distribution over the vocabulary of words
corresponding to the kth topic.

• For the nth document, generate Yn = arg maxy r
T
y E(z̄n) where Yn is the class label associated with the nth document,

z̄n =

Mn∑
m=1

znm/Mn. Here, znm is an indicator vector of dimension K. ry is a K-dimensional real vector corresponding to

the yth class, and it is assumed to have a prior distribution N (0, 1/C). Mn is the number of words in the nth document. The
maximization problem to generate Yn (or the classification problem) is carried out using a max-margin principle.

Note that predicting each class is effectively treated as a separate task, and that the shared topics are useful for generalizing
the performance of the model across classes. In particular, when all classes have few training examples, knowledge transfer
between classes can occur through the shared topics.

Let us denote the hidden variables byZ = {{znm}, {θn}}, the observed variables byX = {wnm} and the model parameters
by κ0. To avoid computational intractability, inference and estimation are performed using Variational EM using a completely
factorzied approximation q(Z). With the use of the lower bound obtained by the factorized approximation, followed by
Jensen’s inequality, DSLDA reduces to solving the following optimization problem1:

min
q,κ0,{ξn}

1

2
||r||2 − L(q(Z)) + C

N∑
n=1

ξn, s.t. ∀n, y 6= Yn : E[rT∆fn(y)] ≥ 1− ξn; ξn ≥ 0. (1)

Here, ∆fn(y) = f(Yn, z̄n)−f(y, z̄n) and {ξn}Nn=1 are the slack variables, and f(y, z̄n) is a feature vector whose components
from (y − 1)K + 1 to yK are those of the vector z̄n and all the others are 0. E[rT∆fn(y)] is the “expected margin” over
which the true label Yn is preferred over a prediction y. From this viewpoint, DSLDA projects the documents onto a combined
topic space and then uses a max-margin approach to predict the class label. The parameter C penalizes the margin violation
of the training data.We skip the update equations here and refer the reader to [5] instead.

4 Active Doubly Supervised Latent Dirichlet Allocation (Act-DSLDA)
In the active learning setting, the model has to be changed slightly. We first state the notations used here. Suppose we are
given an initial training corpus L with N documents belonging to Y different classes. When the learning starts, L is assumed
to have fully labeled documents. However, as the learning progresses more documents are added to the pool L with class
and/or a subset of supervised topics labeled. Therefore, at any intermediate point of the learning process, L can be assumed
to contain several sets: L = {T ∪ TC ∪ TA1

∪ TA2
∪ · · · ∪ TAK2

}, where T contains fully labeled documents (i.e. with both
class and all of supervised topics labeled) and TC represents the documents that have class labels. For 1 ≤ k ≤ K2, TAk

represents the documents that have the kth supervised topic labeled. Since, human provided annotations and class labels are
expensive to obtain in general, we design an active learning framework where the model can query over an unlabeled pool U
and request either class labels or a subset of the supervised topics. We use expected error reduction [18] as a measure in active
selection. Such active selection mechanism is less immune to noise compared to uncertainty sampling [19] but requires the
model parameters to be incrementally updated.

In the test data, the supervised topics are not observed and one has to infer them from either the parameters of the model
or use some other auxiliary information. Since one of our objectives is to query over the supervised topics as well as the
final category, we train a set of binary SVM classifiers that can predict the individual attributes from the features of the data.
We denote the parameters of such classifiers by {r2k}K1<k≤K . This is important to get an uncertainty measure over the
supervised topics. To further clarify the issue, let us consider that only one supervised topic has to be labeled by the annotator
for the nth document from the set of supervised topics of size K2. To select the most uncertain topic, one needs to compare
the uncertainty of predicting the presence or absence of the individual topics. This uncertainty is different from that calculated
from the conditional distribution which one might be tempted to calculate from the posterior over θn.

We change the notation slightly from DSLDA and denote by r1y theK-dimensional real vector corresponding to the yth class,
and it is assumed to have a prior distribution N (0, 1/C). The maximization problem to generate Yn (or the classification
problem) is carried out using a max-margin principle and we use online support vector machines [20] for such update. Since
the model has to be updated incrementally in the active selection step, a batch SVM solver is not applicable. Online SVM
allows one to update the learnt weights incrementally given a new example.

Inference and parameter estimation in Act-DSLDA have two phases – one for the batch case when the model is trained with
some labeled data and the other is for the active selection step where the model has to be incrementally updated to observe
the effect of any labeled information that is queried from the oracle. In the batch mode, Act-DSLDA reduces to solving the

1Please see [10, 5] for further details.
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following optimization problem:

min
q,κ0,{ξn}

1

2
||r1||2 − L(q(Z)) + C

N∑
n=1

ξnITC ,n, s.t. ∀n ∈ TC , y 6= Yn : E[rT1 ∆fn(y)] ≥ 1− ξn; ξn ≥ 0. (2)

The only difference in this objective from that of DSLDA is the presence of the indicator variable ITC ,n which is unity if the
nth document has a class label (i.e. n ∈ TC) and 0 otherwise. This implies that only the documents which have class labels
are used for updating the parameters of online SVM. Rest of the updates are similar to DSLDA.

For active selection, consider that a completely unlabeled or partially labeled document, indexed by n′, is to be included in the
labeled pool with one of the (K2 + 1) labels (one for the class label and each different supervised topic), indexed by k′. In the
E step, variational parameters corresponding to all other documents except for the n′th one is kept fixed and the variational
parameters for only the n′th document are updated. In the M-step, we keep the priors {α1,α2} over the topics and the SVM
parameters r2 fixed as there is no easy way to update such parameters incrementally. From the empirical point of view, these
parameters do not change much w.r.t. the variational parameters or features of a single document. However, the update of the
parameters {β, r1} is easier. Updating β is accomplished by a simple update of the sufficient statistics. Updating r1 is done
using the “ProcessNew” operation of online SVM followed by a few iterations of “ProcessOld”.

5 Experimental Evaluation
Our evaluation used two datasets, a text corpus consisting of abstracts from ACM conferences and a multi-class image database
named aYahoo [3]. Please see [5] for more details about these datasets. In order to demonstrate the contribution of each aspect
of the overall model, DSLDA is compared against the following simplified models – 1. MedLDA with one-vs-all classification
(MedLDA-OVA), 2. MedLDA with multitask learning (MedLDA-MTL), 3. DSLDA with only shared supervised topics
(DSLDA-OSST), 4. DSLDA with no shared latent topics (DSLDA-NSLT), 5. Majority class method (MCM). We skip the
rationales for using such baselines here to save space and details are available in [5].

Figure 1: aYahoo Learning Curves Figure 2: Conference Learning Curves

Figs. 1 and 2 present representa-
tive learning curves for the image
and text data respectively, show-
ing how classification accuracy im-
proves as the amount of class su-
pervision (p2) is increased. Re-
sults are shown for two different
amounts of topic supervision (p1 =
0.5 and p1 = 0.7). The error bars
in the curves show standard devia-
tions across the 50 trials.

We also compare Act-DSLDA
against the following models:
1. Active Learning in MedLDA
with one-vs-all classification
(Act-MedLDA-OVA) – a separate MedLDA model is trained for each class using a one-vs-all approach leaving no possibility
of transfer across classes; 2. Active Learning in MedLDA with multitask learning (Act-MedLDA-MTL)– a single MedLDA
model is learned for all classes where the latent topics are shared across classes (this baseline is supposed to be stronger than
baseline 1 where the latent topics are not shared); 3. Act-DSLDA with only shared supervised topics (Act-DSLDA-OSST)– a
model in which supervised topics are used and shared across classes but there are no latent topics (both the supervised topics
and the class labels are queried using active selection strategy); 4. Act-DSLDA with no shared latent topics (Act-DSLDA-
NSLT) – a model in which only supervised topics are shared across classes and a separate set of latent topics is maintained for
each class (both the supervised topics and the class labels are queried using active selection strategy); 5. Random selection of
only class labels (RSC) – a MedLDA-MTL model where only the class labels are selected at random but the supervised topics
are not used at all 2; (this baseline shows the utility of active selection of classes in MedLDA-MTL framework); 6. Random
selection of class and attribute labels (RSCA) – a DSLDA model where both the class and the supervised topics are selected
at random (this baseline is weaker than RSC since the supervised topics are less informative compared to the class labels).

For experiments with both image and text data in Act-DSLDA, we start with a completely labeled dataset L consisting of
300 documents. In every active iteration, we query for 50 labels (class labels or supervised topics). Figs. 3 and 4 present
representative learning curves for the image and the text data respectively, showing how classification accuracy improves as
the amount of supervision is increased. The error bars in the curves show standard deviations across the 20 trials.

2Note that designing a DSLDA based model where only class labels are selected at random is tricky as one needs to balance the number
of supervised topics queried and the number of class labels selected at random.
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Figure 3: aYahoo Active Learning Curves Figure 4: Conference Active Learning Curves

Overall, the results support
the hypothesis that DSLDA’s
ability to incorporate both
supervised and latent top-
ics allow it to achieve better
predictive performance com-
pared to baselines that ex-
ploit only one, the other,
or neither. Similarly, Act-
DSLDA quite consistently
outperforms all of the base-
lines, clearly demonstrating
the advantage of combining
both types of topics and integrating active learning and transfer learning in the same framework.
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