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Abstract

One important goal of document modeling is to extract a set of informative topics
from a text corpus and produce a reduced representation of each document. In
this paper, we propose a novel algorithm for this task based on nonnegative matrix
factorization on a probability simplex. We further extend our algorithm by remov-
ing global and generic information to produce more diverse and specific topics.
In contrast to other matrix factorization methods, such as latent semantic index-
ing by singular value decomposition, our model has a solid statistical foundation
and is based on a generative model for text corpus. In contrast to purely proba-
bilistic approach, such as probabilistic latent semantic indexing (pLSI) solved by
Expectation-Maximization, our method is based on efficient block coordinate de-
cent optimization. Experiments demonstrate that the new method generates more
meaningful and diverse topics compared with pLSI and LDA with faster conver-
gence behavior.

1 Introduction

There has been increasing interests in topic modeling to analyze a large corpus of documents and
distill a set of meaningful topics. Current methods can be roughly divided into two categories,
1) matrix decomposition methods and 2) probabilistic methods. The most prominent examples in
the first category is latent semantic indexing (LSI) [4] and nonnegative matrix factorization (NMF)
based methods [9, 1]. However, they often ignore probabilistic constraints imposed by the data
generating process and lack solid statistical foundations.

The most well-known probabilistic methods are probabilistic latent semantic indexing (pLSI) [6, 7]
and latent Dirichlet allocation (LDA) [3]. The parameters can be estimated with variational inference
or sampling algorithms [3, 5, 2], which suffers from run time efficiency problem.

In this paper, we propose a fast nonnegative matrix factorization algorithm that combines the best
of both worlds. It is efficient and respects the constraints imposed by the probabilistic generative
models as in pLSI. In addition, we extend our algorithm to remove global and generic information
in a principled way and generate more diverse topics in cases of small number of topics.

2 NMF Formulation with Probability Constraints

Given N documents with a M -sized vocabulary, we create the empirical conditional word distribu-
tion matrix A = P̂ (w|d), with each of its column summing to one. We approximate the nonneg-
ative matrix A ∈ RM×N by a product of two lower-rank nonnegative matrices, W ∈ RM×K and
H ∈ RK×N , where K is the number of topics. We interpret W as topic distributions and H as
per document mixture proportions. Thus each column is required to have unit L1 norm, making it a
probability distribution.
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Due to difficulties in optimizing with constraints, we transform the objective function into a regular-
ized form

min
W≥0,H≥0

‖A−WH‖2F + α‖1>MW − 1>K‖2F + β‖1>KH− 1>N‖2F , (1)

where 1K is an all-ones vector of size K, and α and β are regularization parameters.

Our formulation is closely related to pLSI. To see this, recall that the columns of W are the topic
vectors P (w|z), and the columns of H are the document specific mixture proportions P (z|d). The
matrix product WH is the conditional distribution of words per document P (w|d). By minimiz-
ing the Frobenius norm ‖A−WH‖2F , we obtain factors W and H that approximate the empirical
conditional word distribution A. In contrast, pLSI maximizes the likelihood of data under the model,
which is equivalent to minimizing the Kullback-Leibler (KL) divergence of the empirical joint dis-
tribution P̂ (w, d) and the model P (w, d).

Compared with pLSI, our method minimizes L2 distance instead of KL divergence for ease of op-
timization. Also, we approximate the conditional word distribution instead of the joint distribution.
In fact, the extra factor P (d) in pLSI is not useful in discovering topics [3].

One way to solve (1) is to use the block coordinate descent framework [8, 10], alternating between
solving for H (with fixed W) and solving for W (with fixed H). However, due to difficulty in
solving for W we introduce an auxiliary variable Z, which serves as a proxy of W and hence
decouples the non-negativity and the unit L1 norm constraints. Finally, we solve the following
optimization problem

min
W≥0,H≥0

‖A−WH‖2F + γ‖W − Z‖2F + α‖1>MZ− 1>K‖2F + β‖1>KH− 1>N‖2F , (2)

where γ is a regularization parameter.

3 Three-Block Coordinate Descent Algorithm

The optimization problem (2) can be solved by alternating updates for H , W and Z through the
following three subproblems:

H ← argmin
H≥0

∥∥∥∥( A√
β1>N

)
−

(
W√
β1>K

)
H

∥∥∥∥2

F

(3)

W ← argmin
W≥0

∥∥∥∥( A>√
γZ>

)
−

(
H>√
γI>K

)
W>

∥∥∥∥2

F

(4)

Z ← argmin

∥∥∥∥(√γW√
α1>K

)
−

(√
γIM√
α1>M

)
Z

∥∥∥∥2

F

(5)

We use ANLS/BPP [8] to solve the subproblems (3) and (4).

The least squares problem (5) has a special structure, and we can apply the Sherman-Morrison
formula to obtain a direct solution: Z ←W − α

γ+Mα11
>W +

(
α
γ −

Mα2

γ(γ+Mα)

)
11>, where the

main cost of computing 1>W can be carried out very efficiently.

Theoretically, we need to use large regularization parameters so that the the unitL1 constraints on the
columns of W and H are satisfied. However, large regularization parameters put too much emphasis
on the constraints during the early stage of iterations. Therefore, we start with reasonably small
values and then adaptively increase them as iteration progresses [11]. This approach is reminiscent
of simulated annealing where one starts with high temperature parameters and gradually decreases
the temperature to zero. The overall algorithm is summarized in Algorithm 1, and we name the
algorithm t-NMF for topic NMF.

4 Shifted Non-negative Matrix Factorization

Algorithm 1 can also be extended for hierarchical topic modeling, where at each level, we only find
a small number of topics for a partition of the corpus, and recursively partition the documents and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Algorithm 1 tNMF: Nonnegative Matrix Factorization on Probability Simplex
1: input: Empirical conditional distribution A ∈ RM×N+ , the number of topcisK, regularization parameter α > 0, β > 0, γ > 0.

2: output: Topics W ∈ RM×K+ and mixing proportions H ∈ RK×N+ .
3: repeat
4: if Difference in objective from one iteration to the next is below some threshold and (α, β, γ) has not been increased for a certain

number of iterations then
5: Increase the values for α, β, and γ.
6: end if

7: H ← argminH≥0

∥∥∥∥( A√
β1>N

)
−

(
W√
β1>K

)
H

∥∥∥∥2

F

8: W ← argminW≥0

∥∥∥∥( A>√
γZ>

)
−

(
H>√
γI>K

)
W>

∥∥∥∥2

F

9: Z←W − α
γ+Mα11>W +

(
α
γ −

Mα2

γ(γ+Mα)

)
11>

10: until stopping criterion is reached
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(a) PMI k = 3
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(b) PMI k = 5
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(c) PMI k = 8
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(d) PMI k = 10

Figure 1: Convergence speed comparison using Point-wise Mutual Information (PMI).

apply NMF. The problem, however, is that the obtained topics are similar to each other when K is
small, often consisting of repeated terms that are global to the corpus. In light of this situation, we
propose shifted NMF by explicitly picking out a global topic in hope for more diverse topics.

Specifically, we fix the first topic vector as the average of A, i.e., W:,1 = 1
N

∑
iA:,i. The corre-

sponding mixture proportion, i.e., the first row of H , is allowed to change so that it optimizes the
objective function. The intuition is that by fixing a global topic, the remaining topics are tilted to
explain more specific contents in the corpus, thus arriving at more diverse topics. In addition, the
proportion of the global topic is not the same for every document, and it is optimized together with
other mixture proportions. The algorithm is similar to t-NMF except that W and Z are now both
one dimension smaller than their counterparts in t-NMF.

5 Experiments

We did experiments on the NIPS dataset, which contains 1739 documents from 2000 to 2012 pro-
ceedings, with vocabulary size 13648. We used Point-wise Mutual Information (PMI) [1] to eval-
uate topic quality: PMI = 1

K

∑
i

∑
s,t∈Ti,s<t log

Dst+ε
DsDt

, where Dst is the number of documents
in which keywords s and t co-occur, Ds is the number of documents keyword s occurs, and ε is
a small constant for smoothing. We also computed Average KL divergence (AKL) to measure the
distinctiveness of the topics: AKL = 2

K(K−1)
∑
i<j

(∑
tWti log

Wti

Wtj

)
.

We compared with a Matlab implementation of pLSI in terms of convergence speed and present the
comparison in Figures 1 and 2. Our NMF-based algorithms converge quickly in terms of both PMI
and average KL divergence. The shifted-variant achieves the fastest convergence when k is small.

We summarize the topic quality in Table 1 and list the top 10 keywords from each topic in Table 2.
Shifted NMF is able to produce more diverse topics by allowing a global topic to explain the generic
content in the corpus. t-NMF and LDA discover topics with more repetition of global keywords
such as “data” and “model”. In contrast, pLSI performs poorly by selecting non-descriptive tokens,
and it is not robust to noise.
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(b) KL div k = 5
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(c) KL div k = 8
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Figure 2: Convergence speed comparison using average KL divergence.

Table 1: Performance comparison of shifted NMF, tNMF, LDA and pLSI on NIPS dataset. AKL is Average
KL divergence between pair-wise topic vectors, and PMI is Point-wise Mutual Information.

Method K AKL PMI K AKL PMI

shifted NMF 3 15.32 -330.99 8 14.54 -328.82
t-NMF 3 7.99 -332.07 8 14.61 -327.14
LDA 3 4.26 -332.36 8 5.72 -329.65
pLSI 3 4.01 -333.32 8 5.87 -330.62

shifted NMF 5 11.30 -329.62 10 15.18 -328.02
tt-NMF 5 11.33 -331.49 10 16.23 -327.78
LDA 5 4.93 -331.03 10 5.90 -327.85
pLSI 5 4.88 -332.71 10 6.72 -328.56
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Table 2: Top key words discovered by shifted NMF, tNMF, LDA and pLSI for different K on NIPS dataset.

Method K Topics

shifted NMF 3
network,learning,model,neural,input,function,figure,data,time,networks
data,model,algorithm,set,function,learning,models,training,distribution,number
model,neurons,figure,input,time,cells,neuron,cell,neural,visual

t-NMF 3
model,figure,time,system,data,neurons,models,cells,input,visual
learning,function,algorithm,data,set,error,training,state,problem,number
network,neural,networks,input,output,units,training,hidden,layer,weights

LDA 3
model,figure,time,neurons,input,neuron,system,neural,visual,cells
network,training,neural,input,networks,units,output,set,learning,hidden
learning,function,model,data,algorithm,state,set,error,linear,problem

pLSI 3
kwon,unreliable,cart,shades,finite,minimising,awi,stark,proliferation,thalamus
narrowing,martin,cropped,rts,englewood,stochasticity,aij,automatically,instructive,rgb
closeness,concentric,adds,sooner,pairwise,dispersed,measurable,medicine,ile,sea
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