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Let’s say we have observations in the form of a sequence of variables
x1, ..., xN where each xi is a number from 1 to K. We can summarize this se-
quence as a vector of K count variables n1, ..., nK , such that nk =

∑N
i I[xi =

k]. We want to estimate the probability that the next observation, xN+1 is
some value k, P (k|x).

The maximum likelihood estimate of this probability is exactly what
we would expect, P (k|x) = nk

N . This estimator assigns zero probability
to events that haven’t occurred in the training data x. The Dirichlet-
multinomial model provides a useful way of adding “smoothing” to this
predictive distribution.

The Dirichlet distribution by itself is a density over K positive numbers
θ1, ..., θK that sum to one, so we can use it to draw parameters for a multino-
mial distribution. The parameters of the Dirichlet distribution are positive
real numbers α1, ..., αK . These do not need to sum to one, and in fact their
sum has an important effect on the density. Its probability function is

p(θ | α) =
Γ(

∑
k αk)∏

k Γ(αk)

∏
k

θαk−1
k . (1)

Let’s say we draw a distribution θ from a Dirichlet with parameters α,
and then sample a sequence of N discrete variables x1, ..., xN . The proba-
bility of x given θ is

∏
k θ

nk
k . Combining this term with Eq. 1 we get

p(x,θ | α) = p(x | θ)p(θ | α) (2)

=
∏
k

θnk
k ×

Γ(
∑

k αk)∏
k Γ(αk)

∏
k

θαk−1
k (3)

=
Γ(

∑
k αk)∏

k Γ(αk)

∏
k

θnk+αk−1
k . (4)

This form works out so nicely because the Dirichlet and the multinomial are
a conjugate pair. We’ll talk more about conjugacy later in the course.
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We can simplify Eq. 4 by integrating over the distribution θ to get the
marginal probability p(x|α). There’s a useful trick for doing this kind of
integration. The probability density function over the variables θ has to
integrate to one when we integrate over all possible values of θ.∫

Γ(
∑

k αk)∏
k Γ(αk)

∏
k

θαk−1
k dθ = 1. (5)

We can divide a density function into parts that don’t involve the variable
we’re integrating over, and therefore pop outside the integral, and parts that
have to stay inside the integral. Using this fact, we get a “cheat sheet” that
tells us what scary-looking functions integrate to.

Γ(
∑

k αk)∏
k Γ(αk)

∫ ∏
k

θαk−1
k dθ = 1 (6)∫ ∏

k

θαk−1
k dθ =

∏
k Γ(αk)

Γ(
∑

k αk)
. (7)

The joint distribution over x and θ had just this form, but with parameters
“shifted” by the observations: nk + αk.

p(x | α) =

∫
Γ(

∑
k αk)∏

k Γ(αk)

∏
k

θnk+αk−1
k dθ (8)

=
Γ(

∑
k αk)∏

k Γ(αk)

∫ ∏
k

θnk+αk−1
k dθ (9)

=
Γ(

∑
k αk)∏

k Γ(αk)

∏
k Γ(αk + nk)

Γ(
∑

k αk + nk)
. (10)

This is the Dirichlet-multinomial distribution, also known as the Dirich-
let Compound Multinomial (DCM) or the Pólya distribution. The giant blob
of gamma functions is a distribution over a set of K count variables, condi-
tioned on some parameters α. We can now get back to our original question:
given that you’ve seen x1, ..., xN , what is the probability that xN+1 is k? By
the definition of conditional probability this value is P (xN+1|x1, ..., xN ) =
P (x1, ..., xN , xN+1)/P (x1, ..., xN ). Let’s define n1, ..., nK as the count vari-
ables for all the observations up to xN . Adding one more observation of type
k to the N previous observations means that the total number of instances
of type k is now nk + 1, and the total number of observations is N + 1. The
last fact to remember is that Γ(x+ 1) = xΓ(x).
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Use Eq. 10 combined with the expression for conditional probability and
the gamma recursion.

P (xN+1|x1, ..., xN ) = ??? (11)
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